XML English Abstract Print


دانشگاه شهید چمران اهواز
چکیده:   (3425 مشاهده)

هدف: یادگیری از طریق تلفن همراه نوعی یادگیری از راه دور است که در موقعیت­ های متعدد همراه با تعامل اجتماعی و محتوایی از طریق وسایل الکترونیکی فردی صورت می­گیرد. هدف پژوهش حاضر نیز بررسی عوامل مؤثر بر قصد رفتاری یادگیری دانشجویان تحصیلات تکمیلی دانشگاه شهید چمران اهواز از طریق تلفن همراه بود.
روش: پژوهش حاضر به لحاظ هدف، کاربردی و از نظر روش اجرا، پیمایشی است. جامعه آماری آن شامل 1424 دانشجویان تحصیلات تکمیلی دانشگاه شهید چمران اهواز بود. حداقل حجم نمونه 303 نفر تعیین شد. در این پژوهش از ترکیب مدل دو نظریه پذیرش فناوری و رفتار برنامه­ریزی شده بهره گرفته شد. به منظور تجزیه و تحلیل داده­ها از مدلسازی معادله ساختاری برای بررسی برازش الگوی معادله ساختاری استفاده گردید
یافته­ها: نتایج نشان داد که تمام ساختارهای نظریه رفتار برنامه ­ریزی شده و مدل پذیرش فناوری بر قصد رفتاری یادگیری دانشجویان تحصیلات تکمیلی دانشگاه شهید چمران اهواز از طریق تلفن همراه اثرگذارند.

نتیجه­گیری: مدیران با در نظر گرفتن ویژگی­ها و نیازهای کاربران و اعمال آنها در نظام آموزش مجازی، طراحی نظام آموزش مجازی به گونه­ای که استفاده از آن برای کابران آسان باشد،  و لحاظ نمودن میزان بکارگیری فناوری­های نوین آموزشی در ارزیابی عملکرد اساتید دانشکده­ها موجبات بهبود سطح استفاده از سامانه­ آموزشی ضمن یادگیری از طریق تلفن همراه را فراهم سازند.
 

     
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. ترابی، مجید؛ ابراهیمی مهربانی، شادی. (1394). بررسی تمایل به استفاده از یادگیری از طریق تلفن همراه با توجه به نقش نوآوری‌های فنی در میان دانشجویان تحصیلات تکمیلی دانشگاه آزاد اسلامی واحد دهاقان. سومین کنفرانس بین-المللی حسابداری و مدیریت، تهران، 1-15.
2. رحیم‌نیا، فریبرز؛ سروری، تهمینه؛ پورسلیمی، مجتبی. (1397). بررسی تأثیر پشیمانی از برند بر قصد رفتاری به واسطه رضایت و نقش تعدیل‌گری هویت برند استفاده‌کنندگان در باشگاه‌های ورزشی درجه یک شهر مشهد. مدیریت برند، 5(15)، 1-28.
3. زمانی، بی‌بی عشرت؛ ببری، حسن؛ قربانی، سمیه. (1392). شناسایی راه‌کارهای توسعه یادگیری سیار در فعالیت‌های یاددهی- یادگیری آموزش پزشکی از دیدگاه دانشجویان علوم پزشکی اصفهان و متخصصان فناوری اطلاعات. مجله ایرانی آموزش در علوم پزشکی، ۱۳ (۲)، 87-۹۷.
4. شبیری، سید محمد؛ شمسی پاپکیاده، سیده زهرا. (1395). ارزیابی عوامل مؤثر بر پیاده‌سازی یادگیری سیار در برنامه آموزش محیط‌ زیست با استفاده از مدل رفتار برنامه‌ریزی‌شده. نشریه علمی- پژوهشی فناوری آموزش، 11(1)، 51-61.
5. غفاری آشتیانی، پیمان؛ صادق حری، محمد؛ غلامی، بهمن. (1390). بررسی نقش اعتماد الکترونیک و هنجارهای ذهنی در پذیرش وب سایت تجارت الکترونیک توسط مشتریان (مطالعه موردی: شرکت قطارهای مسافربری رجاء). مدیریت بازاریابی، 6(12)، 63-80.
6. قربانعلی زاده، رسول؛ سیاهکالی مرادی، جواد. (1399). بررسی تأثیر هنجار ذهنی، نگرش نسبت به رفتار و کنترل رفتاری درک شده بر نیت مدیران ارشد دولتی در حمایت از پروژه فناوری اطلاعات (مطالعه موردی: سازمان تأمین اجتماعی قم). رویکردهای پژوهشی نوین در مدیریت و حسابداری، 38(8)، 1-18.
7. مانیان، امیر؛ سهرابی، بابک؛ مرتضوی، احسان. (1393). بررسی عوامل موثر بر پذیرش یادگیری سیار مورد مطالعه: دانشجویان رشته‌های مدیریت، دانشگاه تهران و فردوسی مشهد. پژوهشنامه مدیریت اجرایی، 6 (12): 131-154.
8. ممتازیان، علیرضا؛ رجب دری، حسین. (1396). رابطه پذیرش و استفاده از فناوری با یادگیری سیار در دانشجویان حسابداری. فناوری آموزش و یادگیری، 3(10)، 125-148.
9. Abdullah, F., Ward, R., & Ahmed, E. (2016). Investigating the influence of the most commonly used external variables of TAM on students' Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of e-portfolios. Computers in human behavior, 63, 75-90.
11. Aburub, F., & Alnawas, I. (2019). A new integrated model to explore factors that influence adoption of mobile learning in higher education: An empirical investigation. Education and Information Technologies, 24(3), 2145-2158.
13. Adel Ali, R., & Rafie Mohd Arshad, M. (2018). Empirical analysis on factors impacting on intention to use m-learning in basic education in Egypt. International Review of Research in Open and Distributed Learning, 19(2).
15. Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., & Algharabat, R. (2018). Examining factors influencing Jordanian customers' intentions and adoption of internet banking: Extending UTAUT2 with risk. Journal of Retailing and Consumer Services, 40, 125-138.
17. Al-Emran, M., Elsherif, H. M., & Shaalan, K. (2016). Investigating attitudes towards the use of mobile learning in higher education. Computers in Human behavior, 56, 93-102.
19. Almaiah, M. A., Alamri, M. M., & Al-Rahmi, W. (2019). Applying the UTAUT model to explain the students' acceptance of mobile learning system in higher education. IEEE Access, 7, 174673-174686.
21. Arokiasamy, A. R. A. (2017). A qualitative study on the impact of mobile technology among students in private higher education institutions (PHEIs) in Peninsular Malaysia. Journal of Entrepreneurship and Business, 5(2).
23. Briz-Ponce, L., Pereira, A., Carvalho, L., Juanes-Méndez, J. A., & García-Peñalvo, F. J. (2017). Learning with mobile technologies-Students' behavior. Computers in human behavior, 72, 612-620.
25. Cheon, J., Lee, S., Crooks, S. M., & Song, J. (2012). An investigation of mobile learning readiness in higher education based on the theory of planned behavior. Computers & education, 59(3), 1054-1064.
27. Crompton, H., & Burke, D. (2018). The use of mobile learning in higher education: A systematic review. Computers & Education, 123, 53-64.
29. Dassa, L., & Vaughan, M. (2018). # Class again? How education faculty engage the disengaged college student. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 91(1), 42-45.
31. Gómez-Ramirez, I., Valencia-Arias, A., & Duque, L. (2019). Approach to M-learning acceptance among university students: An integrated model of TPB and TAM. International Review of Research in Open and Distributed Learning, 20(3).
33. Güler, Ç. (2017). Use of WhatsApp in higher education: What's up with assessing peers anonymously?. Journal of Educational Computing Research, 55(2), 272-289.
35. Hameed, F., & Qayyum, A. (2018). Determinants of behavioral intention towards mobile learning in Pakistan: Mediating role of attitude. Business and Economic Review, 10(1), 33-61.
37. Hoque, R., & Sorwar, G. (2017). Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. International journal of medical informatics, 101, 75-84.
40. Kim, J., Eys, M., Robertson-Wilson, J., Dunn, E., & Rellinger, K. (2019). Subjective norms matter for physical activity intentions more than previously thought: Reconsidering measurement and analytical approaches. Psychology of Sport and Exercise, 43, 359-367.
42. Koksal, M. H. (2016). The intentions of Lebanese consumers to adopt mobile banking. International Journal of bank marketing.
44. Kumar, J. A., Bervell, B., Annamalai, N., & Osman, S. (2020). Behavioral intention to use mobile learning: Evaluating the role of self-efficacy, subjective norm, and WhatsApp use habit. IEEE Access, 8, 208058-208074.
46. Naveed, Q. N., Alam, M. M., & Tairan, N. (2020). Structural equation modeling for mobile learning acceptance by university students: An empirical study. Sustainability, 12(20), 8618.
48. Nikou, S. A., & Economides, A. A. (2017). Mobile-based assessment: Investigating the factors that influence behavioral intention to use. Computers & Education, 109, 56-73.
50. O'Dea, S. (2020). Number of smartphone users worldwide from 2016 to 2021. Statista Research Department.
51. Peciuliauskiene, P., Tamoliune, G., & Trepule, E. (2022). Exploring the roles of information search and information evaluation literacy and pre-service teachers' ICT self-efficacy in teaching. International Journal of Educational Technology in Higher Education, 19(1), 1-19.
54. Peteranetz, M. S., Flanigan, A. E., Shell, D. F., & Soh, L. K. (2018). Career aspirations, perceived instrumentality, and achievement in undergraduate computer science courses. Contemporary Educational Psychology, 53, 27-44.
56. Quan, L., Al-Ansi, A., & Han, H. (2022). Assessing customer financial risk perception and attitude in the hotel industry: Exploring the role of protective measures against COVID-19. International Journal of Hospitality Management, 101, 103123.
59. Shamsuddin, A., Wahab, E., Abdullah, N. H., & Suratkon, A. (2018, November). Mobile learning adoption in enhancing learning experience among HEI students. In 2018 IEEE 10th International Conference on Engineering Education (ICEED) (pp. 202-207). IEEE.
61. Siripipatthanakul, S., Siripipattanakul, S., Limna, P., & Pholphong, L. (2022). Predicting Intention to Choose the Online Degree During the COVID-19 Pandemic: The Mediating Role of Perceived Effectiveness. Asia-Pacific Review of Research in Education, 1(1), 1-19.
63. Tahar, A., Riyadh, H. A., Sofyani, H., & Purnomo, W. E. (2020). Perceived ease of use, perceived usefulness, perceived security and intention to use e-filing: The role of technology readiness. The Journal of Asian Finance, Economics and Business, 7(9), 537-547.
65. Uther, M. (2019). Mobile learning-trends and practices. Education Sciences, 9(1), 33.
67. Yeap, J. A., Ramayah, T., & Soto-Acosta, P. (2016). Factors propelling the adoption of m-learning among students in higher education. Electronic Markets, 26(4), 323-338.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به تعامل انسان و اطلاعات می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Human Information Interaction

Designed & Developed by : Yektaweb