Volume 16, Issue 3 (Autumn 2022)                   2022, 16(3): 57-86 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aziminejad A, Makhdoom O, Zarfam P, Sarvghad Moghadam A. Investigating the seismic performance of asymmetric multi-story buildings designed based on the ASCE/SEI 07-22 seismic code using incremental nonlinear dynamic analysis. Journal of Engineering Geology 2022; 16 (3) :57-86
URL: http://jeg.khu.ac.ir/article-1-3107-en.html
1- Assistant professor, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran , arminaziminejad@srbiau.ac.ir
2- PH. D candidate, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3- Assistant professor, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
4- Associate professor, International Institute of Earthquake Engineering and Seismology, Tehran, Iran
Abstract:   (1306 Views)
In most current seismic codes, the stiffness and strength of seismic members are considered to be independent, so that a change in the strength of the members does not result in a change in the stiffness of the members. Recent studies show that these parameters are interdependent. Therefore, the way these parameters are calculated and the arrangement of centers of mass, stiffness and strength can be effective in determining the seismic response. In this research, buildings with different levels of normalized yield eccentricity (ed/A) were designed according to the ASCE/SEI 07-22 seismic code (Code Design models) and compared with the Balance-25% and Symmetric Strength models. The results of the nonlinear static analysis and incremental dynamic analysis showed that the average spectral acceleration at the level of collapse in the Balance-25% and Symmetric Strength models increased by approximately 18% compared to the Code Design model. Therefore, these models are safer than the Code Design model. In addition, the average of the peak rotation of floors and the maximum inter-story drift at the collapse level in the Balance-25% and Symmetric Strength models has decreased by 100% and 12% respectively compared to the Code Design model. Therefore, the Code Design model had the lowest and the Balance-25% and Symmetric Strength models had the highest dynamic seismic performance.
 
Full-Text [PDF 2484 kb]   (418 Downloads)    
Type of Study: Original Research | Subject: En. Geology
Received: 2022/09/21 | Accepted: 2022/12/3 | Published: 2022/12/21

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb