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Abstract

Maximum surface settlement (MSS) is an important parameter for
the design and operation of earth pressure balance (EPB) shields that
should be determined before tunneling. Artificial intelligence (Al)
methods are accepted as a technology that offers an alternative way to
tackle highly complex problems that cannot be modeled in
mathematics. They can learn from examples and they are able to
handle incomplete data and noisy data. The adaptive network—based
fuzzy inference system (ANFIS) and hybrid artificial neural network
(ANN) with biogeography-based optimization algorithm (ANN-BBO)
are kinds of Al systems that were used in this study to make a
prediction model for the MSS caused by EPB shield tunneling. Two
ANFIS models were implemented, the ANFIS-subtractive clustering
method (ANFIS-SCM) and ANFIS-fuzzy c-means clustering method
(ANFIS-FCM). The estimation abilities offered using three models
were presented by using field data from the Bangkok Subway Project

in Thailand. In these models, depth, distance from shaft, ground
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water level from tunnel invert, average face pressure, average penetrate
rate, pitching angle, tail void grouting pressure and percent tail void
grout filling were utilized as the input parameters, while the MSS was
the output parameter. To compare the performance of models for MSS
prediction, the coefficient of correlation (R?) and mean square error
(MSE) of the models were calculated, indicating the good

performance of the ANFIS-SCM model.

Keywords: Maximum surface settlements, EPB shield tunneling, Adaptive network-
based fuzzy inference system, Artificial neural network, Biogeography-based

optimization algorithm.

1. Introduction

Urban population growth and quick economic development have been
increasing the necessity for underground space utilization. Tunneling plays
an important role in the underground engineering, providing a solution for
human needs with minimum surface impacts [1]. Of all tunneling methods,
Earth Pressure Balance (EPB) shield tunneling is considered to be a suitable
tunneling method when surface settlements must be avoided by controlling
face stability and underground water inflow [2]. Some studies have been
done in this area, which it is referred to some of them. Shao and Lan [3]
presented an optimization control method based on the particle swarm
optimization algorithm for the screw conveyor rotating speed when
considering tunnel face stability. Hu et al. [4] developed an EPB control
model with the real time measured data by using the adaptive network-based

fuzzy inference system (ANFIS).
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It has been established that the maximum surface settlement (MSS)
depends on various factors, including tunnel geometry (tunnel depth (m),
distance from launching station (m)), geological conditions (geology at
tunnel crown, geology at tunnel invert, ground water level from tunnel invert
(m)) and shield operation factors (face pressure (kPa), penetration rate
(mm/min), pitching angle (°), tail void grouting pressure (bar), percent tail
void grout filling) [5-7]. The MSS caused by EPB shield tunneling is one of
the important parameters that must be predicted quickly. However, relatively
little quick research has been done in this area. There are several methods for
estimation of MSS, for example empirical and analytical relations, 2-D and
3-D numerical analyses, statistical methods and artificial intelligence methods.
For example in the field of artificial intelligence methods for prediction of
MSS, Suwansawat and Einstein [7] utilized artificial neural networks (ANNS)
model. In terms of MSS modeling, although previous studies are valuable,
offering new models with accurate results can eliminate many field problems
relating to this scope. In this paper, the application of artificial intelligence
methods for data analysis named ANFIS-subtractive clustering method
(ANFIS-SCM) and ANFIS-fuzzy c-means clustering method (ANFIS-FCM)
and hybrid ANN with biogeography-based optimization (ANN-BBO) to
estimate the MSS are demonstrated. In these models (ANFIS-SCM, ANFIS-
FCM, ANN-BBO), depth (m), distance from shaft (m), invert to WT (m),
average face pressure, average penetration, pitching (°), grouting pressure
(bar) and grout filling (%) are utilized as the input parameters, while the

MSS (mm) is the output parameter. The estimation abilities offered using Al
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models are presented by using field data of Bangkok Subway Project in
Thailand that this is the first phase of an integrated transportation plan for
Bangkok, to be implemented in conjunction with other schemes, by the Mass
Rapid Transit Authority (MRTA) [7].

The main scope of this paper is the application and comparison between
three models (ANFIS-SCM, ANFIS-FCM, ANN-BBO) for estimation of
MSS caused by EPB shield tunneling and investigation of the performance

and convergence of Al models.

2. Description of selected models
Several Al techniques employed in this study include ANN, BBO, ANFIS-FCM

and ANFIS-SCM. A brief overview of these techniques is presented here.

2.1 Adaptive network-based fuzzy inference system (ANFIS)

In this section, we present the basic theory of ANFIS model. Both ANN
and fuzzy logic (FL) are used in ANFIS architecture [8-11]. ANFIS consists
of if-then rules and couples of input—output. Also for ANFIS training,
learning algorithms of a neural network are utilized [12] ,[13]. To better
understanding ANFIS, an example with two inputs (x and y) and one output
() is shown in Figure 1.

The architecture of ANFIS consists of five layers (Figure 1), and a brief
introduction of the model is as follows.

Layer 1: Each node i in this layer generates a membership grades of a
linguistic label. For instance, the node function of the i™" node that is defined

as given in Equation (1),
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Figure 1. ANFIS architecture for two—input [13]

Q.l = w1y (X) = ;b @

where, x is the input to node i, and Ai is the linguistic label (small, large,...)
associated with this node; and {s:,v,,b}, is the parameter set that changes
the shapes of the membership function (MF). Parameters in this layer are
referred to as the "premise parameters".
Layer 2: Each node in this layer calculates the "firing strength™ of each
rule via multiplication (Eq. 2).
QF =W, = g1y ().t (y) =12 2)
Layer 3: The i"" node of this layer calculates the ratio of the i™" rule! firing
strength to the sum of all rules firing strengths that is defined as shown in

Eq.3.

[
=

Q=W =—tol— i=12 3)

For convenience, outputs of this layer will be called "normalized firing"
strengths.

Layer 4: Every node i in this layer is a node function which is defined in
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Eq.4,

Qi =Wif; =W (pix +g;y +1,) 3)
where, VV, is the output of layer 3. Parameters in this layer will be referred to
as "consequent parameters".

Layer 5: The single node in this layer is a circle node labeled R that
computes the "overall output” as the summation of all incoming signals that

is defined as shown in EQ.5.

QP =Overall Output =>"W, f, = 2 (5)

W
For a given data set, different ANFIS models can be constructed, using
different identification methods. SCM and FCM are two methods utilized in
this study to identify the antecedent MFs. The ANFIS-SCM combines the
subtractive clustering method and ANFIS. The ANFIS-FCM is the
combination of a fuzzy c-means clustering method and ANFIS.
Clustering methods are extremely important for explorative data analysis.

Two types of these methods are described below.

2.1.1. Subtractive clustering method (SCM)

The subtractive clustering method (SCM) is suggested by Chiu [14]. It
clusters data points in an unsupervised way by measuring the potential of
data points in the feature space. When there is not a clear idea how many
clusters there should be utilized for a given data set, it can be used for
estimating the cluster centers and the number of clusters. The SCM assumes
that each data point is a potential cluster center and calculates the potential
for each data point based on the density of surrounding data points. Then the

data point with the highest potential is selected as the first cluster center, and
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the potential of data points near the first cluster center (within the influential
radius) is destroyed. Then data points with the highest remaining potential as
the next cluster center and the potential of data points near the new cluster
center is destroyed [15]. The influential radius is critical for determining the
number of clusters. A smaller radius leads to many smaller clusters in the
data space, which results in more rules, and vice versa. The it is significant

to select a proper influential radius for clustering the data space [16].

2.1.2. Fuzzy C-means clustering method (FCM)

Fuzzy c-means method (FCM) is suggested by Bezdek [17]. The FCM
partitions a collection of n vector X,,i=1,2,...,n, into ¢ fuzzy groups, and
finds a cluster center in each group such that a cost function of dissimilarity
measure is minimized. The steps of FCM algorithm are therefore, first
described in brief.

Step 1: Chose the cluster centers c,i=12,..,c, randomly from the n
points{ X, X,, X;,..., X, } -
Step 2: Compute the membership matrix U using Eq.6,

1
Hij = — d. - (6)
k=1 Y

where, d; :Hci _XiH’ is the Euclidean distance between i cluster center
and j™ data point, and m is the fuzziness index.
Step 3: Compute the cost function according to the Eq. 7. Stop the process if

it is below a certain threshold.

J(U,C,...,CZ):ZJi =D urd? @

=L j=1
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Step 4: Compute new ¢ fuzzy cluster centers ¢, i=1,2,...,c, using the Eq. 8.
n
2 X
¢ =2

T (8)
JZ=1: :uirjn

go to step 2.

2.2. Hybrid artificial neural network with biogeography-based
optimization (ANN-BBO)

2.2.1 Artificial neural network (ANN)

Artificial Neural Networks (ANNs) are parallel information processing
methods, which can express nonlinear relationships and complex numbers of
input—output training patterns from the experimental data. ANNSs provide a
nonlinear mapping between outputs and inputs by its intrinsic ability [18,19].
The success in obtaining a reliable and robust network depends on the correct
data preprocessing, correct architecture selection, and correct network training
choice [20]. The ANN is trained by performing optimization of weights for
each node interconnection and bias terms; until the values output at the
output layer neurons are as close as possible to the actual outputs.

In this regard, the data are split into two sets, a training data set and a
testing data set. The model is produced using only the training data. The
testing data are utilized to estimate the accuracy of the model performance.
In training a ANN, the objective is to find an optimum set of weights. When
the number of weights is higher than the number of available data, the error
in-fitting the non-trained data initially decreases, but then increases as the

network becomes over-trained. In contrast, when the number of weights is


http://dx.doi.org/10.18869/acadpub.jeg.12.5.55
https://dor.isc.ac/dor/20.1001.1.22286837.1397.12.5.3.5
https://ndea10.khu.ac.ir/jeg/article-1-2583-en.html

[ Downloaded from ndeal0.khu.ac.ir on 2025-11-27 ]

[ DOR: 20.1001.1.22286837.1397.12.5.3.5 ]

[ DOI: 10.18869%acadpub.jeg.12.5.55 ]

Forecasting surface settlement caused by shield tunneling using ANN-BBO model... 63
smaller than the number of data, the over-fitting problem is not crucial [21].

2.2.2. ANN-BBO model

ANN training has traditionally been carried out using a BP algorithm.
However, this approach has some drawbacks, such as local minimum trapping,
over-fitting, and weight interference, which have complicated ANN training.
In contrast, the optimization algorithms have balanced exploration and
exploitation capabilities; therefore, it does not get stuck in local minima [22-
24]. In the present study, the BBO [25] is proposed for optimizing the
weights of ANN.

Figure 2 shows the formation of two connection weight matrixes w1 and
2. The former represents the connection weight matrix between the input
layer and hidden layer, and the latter represents the connection weight matrix
between the hidden layer and the output layer. The total weights can be
defined as

o=[V@) v(@)] =@ (11)....01 @b)., (L1) .. (b.6)] O
where v represents the vectorization operation. a, b, and ¢ denote the number

of input, hidden, and output neurons. ® represents the weights that need to

be trained [26].
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Figure 2. The two connection weight matrix within a feed forward
neural network

The fitness function (FF) is defined in the following four steps:

(1) The outputs of hidden neurons are as follows:
y, =A, [Za)l(i,j)xiJ j=12,..Db (10)
i=1

where x; represents the input of i input neuron and y; the output of j™ hidden

neuron. Ay is the activation function of hidden layer in the form of

1
AL(X)=——— 11
+ () exp(—x )+1 (11)
(2) The outputs of output neurons are as follows
b
OkZAo(sz(j,k)yjj k =12,..,C (12)
j=1

here, Ao represents the activation function of output layer, usually a linear
function.
(3) The error between output and target values is calculated as mean squared

error (MSE)
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C
E, =MSE | > (O, -T,)|1=12..N, (13)
k=1
where Tk represents the k™ realistic value and Ns represents the sample
number.

(4) The FF is deduced as the averaged MSE of all samples
NS
f (0)=>E, (14)
1=1

The task was the minimization of this f(w), that is, to force the output
results to approximate to corresponding realistic class types. In closing, the
training procedure was transformed into an optimization problem, in which
the average MSE between the output and the target was treated as the FF and
the weights/biases of ANN were regarded as the variables. BBO was used to
solve this optimization problem. The flowchart of the ANN-BBO model is

shown in Figure 3.

3. Study area and data

The main aim of this work is to implement the above methodologies in
the problem of MSS estimation. The dataset applied in this study for
determining the relationship among the set of inputs and output variables are
gathered from open source literature [7]. The collected data sets used to
construct the database are from Bangkok Subway Project in Thailand.

This project consisting of 20 km of twin tunnels is classified into two
main tunnel sections namely, the north tunnel section and the south tunnel

section.
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| Problem definition: Forecasting and |

Optimization
End
| Data set and information |
2 | ANN output |
| Data processing (normalization) I Y

Test data set Optimized (trained) ANN with the
selected parameters

Training data set

Y

| BBO based selection of parameters Is ANN training complete?

Y

l Training ANN |—->| Mean error of modeling

Figure 3. Flowchart of the ANN-BBO model

Each data set contains the parameters of depth (m), distance from shaft
(m), ground water level from tunnel invert (invert to WT) (m), average face
pressure (kPa), average penetrate rate (mm/min), pitching angle (°), grouting
pressure (bar), grout filling (%), geology at tunnel crown, geology at tunnel
invert and measured MSS (mm). In this paper, we have used all parameters
except geology at the tunnel crown and geology at the tunnel invert. Partial
dataset used in this study are presented in Table 1. Also, descriptive statistics
of the all data sets are shown in Table 2. All data (49 data sets) were divided
into two subsets: 80% of the total data (39 cases) was allotted to training
data of the models construction and 20% of the total data (10 cases) was

selected for test data used to assess the reliability of the developed models.


http://dx.doi.org/10.18869/acadpub.jeg.12.5.55
https://dor.isc.ac/dor/20.1001.1.22286837.1397.12.5.3.5
https://ndea10.khu.ac.ir/jeg/article-1-2583-en.html

[ Downloaded from ndeal0.khu.ac.ir on 2025-11-27 ]

[ DOR: 20.1001.1.22286837.1397.12.5.3.5 ]

[ DOI: 10.18869%acadpub.jeg.12.5.55 ]

Forecasting surface settlement caused by shield tunneling using ANN-BBO model... 67

Table 1. Partial dataset used for constructing the Al models [7]

Input parameters
Output parameter

Dist
anc Inv  Avera Grouti  Gro
Ca e ert ge Average o
Dept Pitching ng ut Surface
se fro to face penetrate -
N h angle pressu  filli settlement
0 m) m W pressu rate (deg) re ng (mm)
shaf T re (mm/min)

t (m)  (kPa) (bar) (%)

(m)
1 18.2 336 0.65 345 335 -0.07 3.03 92 -60.5
2 18.61 58.8 0.24 32 42.4 -1.01 3.03 100 -51.4
3 18.7 62.4 0.15 31 41.65 -1.05 3.03 100 -47.9
4 19.21 82.8 0.-36 545 34.45 -1.38 7.4 122 -31.9
5 19.63 99.6 0.-78 845 32.55 -0.88 5.6 116 -15.9
6 20.17 121.2 1‘_32 100.5 30 -1.12 53 110 -135
7 211 158.4 2.-25 131 26.4 -1.11 25 121 -15.7
8 22.06 196.8 3‘_21 123 29.75 -1.11 25 117 -16.8
9 23.09 223.2 4.-24 65.5 40.65 -1.14 25 119 -215
10 23.22 252 4‘_37 145 48.9 -0.45 25 127 -43.8

Table 2. Statistical description of dataset utilized for construction of
three models

Parameter Average Min Max
Depth (m) 22.05 17.89 24.82
Distance from shaft (m) 1320.27 33.60 3055.20
Invert to WT (m) -3.20 -5.97 0.96
Average face pressure (kPa) 54.73 14.50 131.00
Average penetrate (mm/min) 42.63 20.10 76.85
Pitching angle (deg) 0.05 -1.38 1.43
Grouting pressure (bar) 2.78 2.30 7.40
Grout filling (%) 125.96 70.00 224.00
surface settlement (mm) -28.09 -60.50 -6.25

4. Pre-processing of data and performance criteria
The actual data is often incomplete, inconsistent and noisy. Pre-
processing methods used for data normalization. This work ensures that the

raw data retrieved from database is perfectly suitable for modeling. In this
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study, all data samples are normalized to adapt to the interval [0, 1]

according to the following linear mapping function (Eg. 15),
x = X Xmin (15)
X

max — X min

where x is the original value from the dataset, X , is the mapped value, and

X min (X max ) denotes the minimum (maximum) raw input values, respectively.
Furthermore, to consider the performances of the Al models, MSE and

correlation coefficient (R?) were chosen to be the measure of accuracy. MSE

and R? could be defined, respectively, as follows,

MSE :%i(tk -t )? (16)
. kZ:;(tk ) (17)

D>
t2_ i=1

n

Let tk be the actual value and tAk be the predicted value of the k™ observation
and n be the number of observations.

5. Estimation of maximum surface settlement (MSS) using ANFIS
models

In this section, ANFIS was utilized to build a prediction model for
estimation of MSS from available data, using MATLAB environment. Two
ANFIS models were implemented, SCM and FCM. Figure 4 displays the
fuzzy architecture of the ANFIS.
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MATLAB

Invert to WT (m)

—
L \I)
Average face pressure Output Parameter
- .
P = ANFIS =P { Maximum surface settlement (mm)
FCM

Grout filling (%)

Figure 4. Architecture of the ANFIS based on the SCM and FCM.

A dataset that includes 49 data points was employed in the current study,
while 39 data points (80%) were utilized for constructing the model and the
remainder data points (10 data points) were used for assessment of degree of
accuracy and robustness. The characterizations of the ANFIS models are
given in Tables 3 and 4. Also, the MFs of the input parameters for different
models are illustrated in Figures. 5 and 6.

Table 3. Characterizations of the ANFIS models

ANFIS parameter ANFIS-SCM ANFIS-FCM
MF type Gaussian Gaussian
Output MF Linear Linear

Number of nodes 65 47
Number of linear parameters 27 18
Number of nonlinear parameters 48 32
Total number of parameters 75 50
Number of training data pairs 39 39
Number of testing data pairs 10 10
Number of fuzzy rules 3 2

Table 4. The optimal parameters of the ANFIS models

parameter ANFIS models
Error goal 0
The initial step size 0.01
Step size decrease rate 0.6
Step size increase rate 1.1
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Figure 6. MFs obtained by ANFIS-FCM model.

5.1. Training and validation models
Part of the sensitivity analysis of ANFIS-SCM and ANFIS-FCM models

0.6 0.7

0.8

0.9 1

are shown in Tables 5 and 6. A comparison between the results of two

models for testing and training datasets is presented in Table7. Based on

Table 7, the ANFIS-SCM model can obviously be considered as the best

model. The point is that, in this model, MSE and R? (Figures. 7 and 8) values

for training and testing datasets are minimum and maximum respectively,

which means the complex relation between inputs and output were fully

captured.
Table 5. Part of the sensitivity analysis of the ANFIS-SCM model
The Step Step
number size size
Influence of decrease  increase 2 2
radius periodic rate rate RTrain MS ETrain RTest MS ETest
training
process
1.3 400 0.6 1.1 0.9627 0.0015 0.4341 0.1432
1.2 200 05 1.1 0.9545 0.0019 0.5080 0.0584
1.2 100 0.6 1.2 0.9488 0.0021 0.6076 0.0513
1.6 150 0.1 15 0.8382 0.0069 0.6244 0.0442
15 100 0.6 1.2 0.8384 0.0068 0.6264 0.0440
11 100 1.9 0.1 0.9318 0.0029 0.6284 0.0455
1.3 100 0.1 2 0.9469 0.0022 0.7122 0.0387
1.3 100 0.6 1.2 0.9447 0.0023 0.8571 0.0263
1.3 100 0.3 1.2 0.9429 0.0024 0.8794 0.0290
1.3 100 0.6 11 0.9431 0.0024 0.8806 0.0287
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Table 6. Part of the sensitivity analysis of the ANFIS-FCM model

The Step size Step
Number numfber decrease ) size
o} rate increase 2 2
CIU(S)IEI’S per.ionic rate RTrain M S ETrain RTest M S ETest
training
process
3 50 0.6 1.3 0.8655 0.0057 0.5917 0.0894
3 60 0.6 1.7 0.8595 0.0059 0.6265 0.0725
3 150 0.3 15 0.9219 0.0033 0.6863 0.0409
3 100 0.3 1.3 0.9240 0.0032 0.6965 0.0394
2 100 0.6 11 0.8746 0.0053 0.7181 0.0476
2 1000 0.1 0.9 0.8684 0.0056 0.7375 0.0471
2 1000 0.6 11 0.9022 0.0041 0.7936 0.0452
2 400 0.6 11 0.9018 0.0041 0.8023 0.0434
2 200 0.6 11 0.9010 0.0042 0.8095 0.0419
2 150 0.6 11 0.9003 0.0042 0.8202 0.0403

Table 7. A comparison between the results of ANFIS models

ANFIS model MSE R?
Training 0.0024 0.9431
(IHEASR Testing | 0.0287 0.8806
Training 0.0042 0.9003
ANFIS-FCM Testing | 0.0403 0.8202
Measured MSS (mm) N
2%
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Figure 7. Correlation between measured and predicted values of MSS
by ANFIS-SCM (a) training data, (b) testing data.

6. Estimation of maximum surface settlement (MSS)
using ANN-BBO model

In this section, ANN was utilized to build a prediction model for estimation
of MSS from available data, using MATLAB environment. Although ANNs
are able to map input to output patterns directly and to use all influential
parameters in model prediction, they still have some shortcomings such as a
slow rate of learning and getting trapped in local minima [27], [28]. To
overcome these problems, it is used BBO to better regulate the weights and
biases of the ANN model. 80% (39 data points) of the datasets were assigned
for training purposes, while 20% (10 data points) were used for testing the

network performance.
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Figure 8. Correlation between measured and predicted values of MSS
by ANFIS-FCM (a) training data, (b) testing data.
While all of these affect ANN performance, increased attention has been
especially directed to finding the best architecture. This is justified not only
by the fact that it is directly associated with the model performance but also

because there is no theoretical background as to how this architecture will be

found or what it should look like. The most typical method followed is a
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repetitive trial-and-error process, during which, a large number of different
architectures are examined and compared to one another (see Table 8). The
optimal network for this study having one input layer with eight inputs, one
hidden layer with nine neurons, and sigmoid hyperbolic tangent (tansig)
activation function. The output layer has one neuron with a sigmoid hyperbolic
logarithm (logsig) activation function. The architecture of the ANN-BBO
model is shown in Figure 9. Also the optimal control parameters used for
running BBO is demonstrated in Table 9. Correlations between measured
and predicted values of MSS for training and testing phases are depicted in

Figurel0.

Table 8. Part of the sensitivity analysis of the ANN-BBO model

Maximu
Model Activatio m . 2 2
architectur n Number Popu_latlo RTrain MS ETrain RTest MS ETest
. nsize
e functions of
Iterations
TanSig- 50 30
8361 TanSig- 04009 00302 04366  0.1159
TanSig
TanSig- 50 50
86-31  TanSig- 05874 00526 04785  0.0723
LogSig
TanSig- 50 200
8351  LogSig- 06105 00428 05325  0.0832
LogSig
LogSig- 150 50
8451  TanSig- 06426 00174 0591  0.0486
LogSig
TanSig- 100 50
851 oy 06541 00252 03414  0.0884
g31  L0gSig- 500 100 07568 00204 05150 00554
TanSig
g10-1  ransie- 300 % 05329 00351 05502 00402
TanSig
a LogSig- 50 100
881 |ordy 07970 00209 07979  0.0246
g9l |anSig- 1000 0 08002 00149 08009 00231
LogSig
g9l lanSig- 700 % 08118 00105 08028 00268
LogSig
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Table 9. The optimal control parameters used for running BBO.

Definition Value
Number of habitats (population size) 50
Highest number of repeat algorithm steps 700
Migration formula coefficient 0.9
Percentage of mutation 0.1
Percentage of old population that is directly transferred to the new population 0.2
Hidden layer
Input layer
Depth (m)

Distance from shaft (m)
Invert to WT (m)

Average face pressure Output layer

Average penetrate surface settlement (mm) >

Pitching (°)
Grouting pressure (bar)

Grout filling (%)

Figure 9. Architecture of ANN-BBO model.

To visually consider results in Tables 5, 6 and 8 in detail, performance of
models compared with measured data in the training phase and testing phase
are displayed in Figures. 11 and 12. These figures imply that complex
relationships and structure among the data were highly captured by ANFIS-
SCM model in this case of study. It is also concluded from Figures. 11 and
12, Tables 5 and 8 that the error of the training phase and testing phase are

negligible which make this model as an accurate and valid model.
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Figure 10. Correlation between measured and predicted values of MSS
by ANN-BBO (a) training data, (b) testing data
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Figure 11. Bar chart for measured and predicted values of MSS in
training phase: a ANFIS-SCM, b ANFIS-FCM, ¢ ANN-BBO
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Figure 12. Bar chart for measured and predicted values of MSS in
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7. Conclusions
An attempt was made to study the performance of several Al methods for
forecasting the MSS caused by EPB shield tunneling. The forecasting methods
that have been investigated include the ANFIS-FCM, ANFIS-SCM and
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ANN-BBO. The field data from the Bangkok Subway Project in Thailand
were employed to develop various models investigated in this study. Two
standard statistical performance evaluation measures are adopted to evaluate
the performances of various models developed. The obtained results indicate
that the Al methods are powerful tools to model the MSS caused by EPB
shield tunneling. The results represent that the best performance can be
obtained by ANFIS-SCM, in terms of different evaluation criteria during the
training and testing phases. Also, ANN-BBO model is able to obtain the
better forecasting accuracy in terms of different evaluation measures during
the validation phase during both the training phase and the testing phase. The
prediction by ANFIS-FCM model during the validation phase are inferior to
the results during the training phase. Therefore, the results of the study are
highly encouraging and to be suggested that ANFIS-SCM and ANN-BBO
approaches are promising in modeling MSS caused by EPB shield tunneling,
and this may provide valuable reference for researchers and engineers who
apply Al methods for modeling MSS caused by EPB shield tunneling

forecasting.
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