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Abstract

The rock uniaxial compressive strength (UCS) and modulus of elasticity (Es) are two key
design parameters in geotechnical engineering and rock mechanics. This study tries to
accurately predict the desirable parameters using physical characteristics and ultrasonic tests.
To do so, two methods, i.e. principal components regression and support vector regression,
were employed. The parameters used in modelling included density, P- wave velocity,
dynamic Poisson’s ratio and porosity. Accordingly, the experimental results conducted on
115 limestone rock samples, including uniaxial compressive and ultrasonic tests, were used
and the desired parameters in the modelling were extracted using the laboratory results. By
means of coefficient of determination (R?), normalized mean square error (NMSE) and Mean
absolute error (MAE), the developed models were validated and their accuracy were
evaluated. The obtained results showed that both methods could estimate the target
parameters with high accuracy. In UCS modeling, the values of R?, NMSE, and MAE
obtained from the PCR method for the training set were 0.78, 22.45, and 0.363, respectively.
Also, the values of R?, MSE, and MAE obtained for the testing set were 0.76, 22.51, and
0.357, respectively. In Es modeling, the values of R%, MSE, and MAE obtained from the PCR
method for the training set were 0.71, 34.23, and 0.421, respectively. Also, the values of R?,
NMSE, and MAE obtained for the testing set were 0.7, 34.23, and 0.43, respectively. In
support vector regression, Particle Swarm Optimization method was used for determining

optimal values of box constraint mode and epsilon mode, and the modelling was conducted
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using four kernel functions, including linear, quadratic, cubic and Gaussian. Here, the
quadratic kernel function yielded the best result for UCS and cubic kernel function yielded
the best result for Es. The values of R2, NMSE, and MAE were 0.83, 16.98, and 0.329,
respectively, for the training dataset using the quadratic function in modeling UCS with the
SVR method. Also, the values of MSE, R?, and MAE obtained for the testing set were 0.76,
22.15, and 0.296, respectively. In Es modeling, the values of R?, MSE, and MAE were 0.73,
29.11, and 0.45 for the training set, respectively. Also, the values obtained for R?, MSE, and
MAE were 0.7, 25.67, and 0.272, for the testing set, respectively. In addition, comparing the
results of the principal components regression and the support vector regression indicated

that the latter outperformed the former.

Keywords: Uniaxial compressive strength, Dynamic young’s module, Support vector regression,

Principal components regression, Ultrasonic test

1.Introduction

Uniaxial compressive strength (UCS) and static Young's modulus (Es) are two
important aspects of the behaviors observed in intact rocks, playing a crucial role in
classification systems of rock bodies and their failure, design stages of engineering
projects, and determination of failure behaviors found during drilling operations, tunnel
construction, foundation design and dam construction[1-4]. Generally, the commonly
used methods to achieve the aforementioned parameters are divided into two groups,
namely direct methods based on the measurement (tests) of laboratory specimens and
indirect methods based on the estimation of values through desirable empirical equations
[2, 5]. The procedure of conducting laboratory tests, commonly used to determine the Es
and UCS of rocks, is standardized by the American Society for Testing and Materials
(ASTM) and the International Society for Rock Mechanics (ISRM). In the laboratory,
high-quality core specimens are required to directly determine the UCS and Es. On the
other hand, high-quality cores cannot always be extracted from weak, highly fractured,
weathered, and thinly bedded rock samples [6, 7]. Furthermore, the exact implementation
of the given tests is time-consuming, tedious and costly, requiring a large number of
desirable specimens [3, 8]. To overcome these problems, many studies have been

conducted to find a fast and efficient way to predict UCS and Es parameters based on
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indirect and non-destructive methods[5]. Compared with the static methods, the
ultrasonic approach, as a non-destructive method, makes it possible to achieve the values
of some dynamic parameters at little expense without any changes in the internal structure
of specimens. Quantities such as density (p), P-wave velocity (Vp) and shear wave
velocity (Vs), due to two significant advantages of relative cheapness and availability, are
among parameters serving to estimate the UCS and Es. Despite the fact that the
acceptability, reliability, and practicality of the static parameters are more than the
dynamic parameters, the static parameter measurement is much harder than that of the
dynamic ones. This is because the static measurements are strongly influenced by crack,
pore pressure and stress-strain. Therefore, finding the correct correlation between the
static and dynamic parameters, using indirect methods, is required [1].

In order to achieve empirical relations and equations that yield UCS and Es values,
researchers have lately employed simple regression techniques and multiple regression
analyses (MRA)[9-11]. In recent years, probabilistic and soft-computing methods,
including artificial neural networks (ANN) [9, 11-20], Bayesian methods [21-23],neural
networks and fuzzy systems [7], fuzzy inference systems [10, 16, 24-27], adaptive neuro-
fuzzy inference systems [11, 24, 28, 29], support vector regression [12], regression
trees[30, 31], genetic programming [2, 32, 33], neural network and genetic algorithm|[6,
34], hybrid artificial neural network and particle swarm optimization technique [35, 36],
and hybrid neural network and imperialist competitive algorithm [27] have been adopted
by researchers in order to estimate the UCS and E;s values.

The aim of the present study is to develop robust and practical models for estimating
the UCS and E;s of limestone. Review of the related literature showed that there were few
studies focusing on the application of Principal Component Regression (PCR) and
Support Vector Regression (SVR) models so as to predict rock properties. SVR method
was only used in a similar study and PCR method was not used for estimation of UCS
and Es. In this study, the UCS and Es of PCR and SVR models were trained and tested
using 115 datasets extracted from the Roud Bar Lorestan Pumped Storage Power Plant
project. Index tests, including density (p), porosity (n), ultrasonic P-wave velocity (Vp),

and Poisson's ratio (v), were used to estimate the UCS and Es
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2.The regression analyses techniques
2.1. Principal Component Regression (PCR)

Principal Component Regression (PCR) is a regression analysis technique, based on
principal component analysis (PCA). PCA is used to estimate the unknown regression
coefficients in the model. PCR, however, considers regressing the outcome (also known
as the dependent variable or the response) on a set of covariates (also known as
independent variables, predictors or explanatory variables) based on a standard linear
regression model [37, 38]. In PCR, instead of directly regressing the dependent variable
on the explanatory variables, the principal components of the explanatory variables are
used as regression is done. Only one subset of all principal components is typically used
for regression. The principal components with higher variances, that is to say, the ones
based on eigenvectors corresponding to the higher eigenvalues of the sample variance-
covariance matrix of the explanatory variables, are often selected as regresses. However,
to predict the outcome, the principal components having low variances are also
significant; in a number of cases, they are even more important[37]. One major use of
PCR lies in overcoming the multicollinearity problem arising when two or more
explanatory variables are close to collinearity. PCR can aptly deal with such cases by
excluding some of the low-variance principal components in the regression step. In
addition, typically, by regressing on only one subset of all principal components, PCR
can result in the sufficient dimension reduction through substantially lowering the
effective number of parameters characterizing the underlying model. This can particularly
be useful in settings where high-dimensional covariates exist. Also, through appropriate
selection of the principal components to be used for regression, PCR can lead to the
efficient prediction of the outcome based on the assumed model [38, 39].

The regression equation in the matrix form is written as follows:
Y=XB+e (1)

Let Y,,=(y,..y,)" denote the vector of observed outcomes and X, =(x,...x,)" signify
the corresponding data matrix of observed covariates where, n and p indicate the size of
the observed sample and the number of covariates respectively, with n> p. Each of the
nrows of X denotes one set of observations for the p dimensional covariate and the

respective entry of Y represents the corresponding observed outcome. Assume that Y and
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each of the p columns of X have already been centered so that all of them have zero
empirical means. This centering step is crucial (at least for the columns of X ) since PCR
involves the use of PCA in X . PCA is also sensitive to the data centering [39].

B e RPdenotes the unknown parameter vector of regression coefficients ande
represents the vector of random errors.

The primary goal is to obtain an efficient estimator B for the parameter B , based on the
available data. One frequently used approach for this purpose is ordinary least squares
regression in which, assuming X is the full column rank, the unbiased estimator
B, =(X"X)*X"Y ofB is achieved. PCR is another technique used for the same
purpose of estimating B [39].

2.2. Support Vector Regression (SVR)

Data classification is a common task in machine learning. Support Vector Machines
(SVM) are learning machines that to obtain good generalization on a limited number of
learning patterns used the structural risk minimization inductive principle, first identified
by Vladimir Vapnik and his colleagues in 1992 [40]. Suppose some given data points,
each belonging to one of the two classes, where the goal is to decide in which class a new
data point will place. In the case of support vector machines, a data point is viewed as a
p-dimensional vector (a list of p numbers). Here, the goal is to find whether or not such
points can be separated with a (p —1) -dimensional hyperplane. This is called a linear
classifier. There are many hyperplanes that can classify the data. Concerning the best
hyperplane, one reasonable choice is the one representing the largest separation, or
margin, between the two classes. Thus, the authors select the hyperplane whose distance
from the nearest data point on each side is maximized. If such a hyperplane exists, it is
known as a maximum-margin hyperplane; the linear classifier it defines is known as a
maximum-margin classifier; or equivalently, the perceptron of the optimal stability [41,
42]. SVM implements a learning algorithm, useful for recognizing subtle patterns in
complex data sets. The algorithm performs discriminative classification learning, for
example, to predict the classifications of previously unseen data. There are two main
categories for support vector machines, i.e. support vector classification (SVC) and

support vector regression (SVR). The model developed by SVR only depends on a subset
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of the training data because the cost function for building the model ignores any training
data that is close to the model prediction [43].
Suppose we have a set of training data where x, is a multivariate set of N observations
with observed response values y, [40]. To find the below linear function:
f(x)=xB+b )
and ensure that it is as flat as possible, f(x) with minimal norm values ( g4") is found.

This is formulated as a convex optimization problem to minimize the following equation:

1 .
J(B) = 5,3 B (3)
which is subject to all residuals having a value less than g, or, in an equation form:
V1|V, —(X,B+b)<e (4)

There are a number of cases in which no such function f(x) exists to satisfy the
mentioned constraints for all points. To deal with the possible infeasible constraints, slack
variables & and &, are introduced for each point. This approach is similar to the "soft
margin" concept in SVM classification because the slack variables allow regression errors
to exist up to the value of & and &, , while satisfying the required conditions. Including

slack variables leads to the objective function, also known as the primal formula[39, 44]:

WB)=5F F+CY (6 +E) (5)
Which is subject to:

Voiy —(xf+b)<e+é (6)

V(X B+h)-y <e+& (7)

& 20 @)

& 20 (9)

The constant C is the box constraint, a positive numeric value that controls the penalty
imposed on observations lying outside the epsilon margin (&) and helps to prevent
overfitting (regularization). This value determines the trade-off between the flatness of
f(x) and the amount up to which deviations larger than ¢ are tolerated. The linear &-
insensitive loss function ignores errors that are within ¢ distance of the observed value by
treating them as equal to zero. The loss is measured based on the distance between the
observed value y and thee boundary. This is formally described by the following

equation:
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0 ly—f(x)| <&
{\ y—f(x)—& otherwise (10)

The optimization problem previously described is computationally simpler to solve in
its Lagrange dual formulation. The solution to the dual problem provides a lower bound
to the solution of the primal (minimization) problem. The optimal values of the primal
and dual problems need not be equal, and the difference is called the "duality gap.”
However, when the problem is convex and satisfies a constraint qualification condition,
the value of the optimal solution to the primal problem is given by the solution of the dual
problem.

To obtain the dual formula, a Lagrangian functionshould be constructed from the
primal function by introducing nonnegative multipliers o, and «, (Lagrange multiplier)
for each observation x,. This leads to the dual formula, where the following equation is

minimized[43]:

N N

L@)=13>(a —a)a, —a)x +&X(a -a)+d v, (a ~a)
(11)

which is subject to the following constraints:
3 (a,-a;)=0 W)
C;n 0<an"<C (13)
V,:0<¢,<C (14)

where the S parameter can completely be described as a linear combination of training

observations using the equation below:

p=>(a, ;)% (15)

The function f(x) is then equal to[43]:
f(x)=>" (a,-a,)(Xx)+b (16)

For linear SVR, the conditions are as follows:

V. ia(e+& -y, —XpB+b)=0 (17)
Voia(e+& +y —xB-b)=0 (18)
V,:1&(C—a,)=0 (19)
vV :E(C-a,)=0 (20)
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Some regression problems cannot adequately be described using a linear model. In such
a case, the Lagrange dual formulation allows the previously described technique to be
extended to nonlinear functions.

Accordingly, a nonlinear SVR model is obtained by replacing the dot product x,x, with
anonlinear kernel function G(x;, X,) <@(x,), @(X,) >, where ¢(x) is a transformation that
maps x to a high-dimensional space. Statistics and Machine Learning Toolbox provide
the following built-in semi-definite kernel functions.

The Gram matrix is an n-by-n matrix containing elements g; =G(x;, X;) . Each element
g; is equal to the inner product of the predictors as transformed by ¢ . However, there is
no need to know ¢ because the kernel function can be used to directly generate the Gram
matrix. Using this method, the nonlinear SVR finds the optimal function f(x) in the
transformed predictor space.

The dual formula for nonlinear SVR replaces the inner product of the predictors ( x;, X;
with the corresponding element of the Gram matrix (g;). Nonlinear SVR finds the

coefficients that minimize the equation below:
1 N N . . N R N R
L(a):EZZ(ai - Xa,- _aj)G(Xi ’Xj) +€Z(ai 8 )—Zyi(ai - ) (21)
i=1 j=1 i=1 i=1
These conditions indicate that all observations, strictly inside the epsilon tube, have
Lagrange multipliers «, =0 and &, =0. Observations with nonzero Lagrange
multipliers are called support vectors. The functions used to predict new values only

depends on the support [39-42]:

N
f(x)=(a, ~a;)6(x,.x)+b (22)
n=2
Several kernel functions are available in the literature [45]. In this study, the authors
employed four kernel functions, i.e. linear, quadratic, cubic and gaussian functions, in the

prediction model concerning UCS and Es.

2.3.Performance Evaluation
The performance of the developed models was evaluated by means of three criteria,
including coefficient of determination (R?), normalized mean square error (NMSE), and

mean absolute error (MAE). These criteria were defined as follows:
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Re = LT ' | (23)
[;(P.—E)Z(M.—M)ﬂ
(M, P
NMSE == ————x100 (24)
2(M,y
1 N
MAE = — M. —-P 25
(M)gl . — P (25)

In the abovefrelationships, N is the number of samples, P.and M, are the predicted and
measured output values, and P and M are the means of the predicted and measured

outputvalues.

3.Rock characteristics and testing procedures

The samples examined in this study were the cylindrical core samples of limestone
collected from 10 exploratory boreholes located near the powerhouse cavern of the Roud
Bar Lorestan pumped storage power plant project (RL-PSPP), Lorestan province, Iran
(Fig.1). The powerhouse is located in the thick light- to dark-gray limestone and dolomite
limestone layer of Dalan formation (Fig. 2). The bedding dip of this formation is mostly
semi-vertical (about 70 — 80 degrees toward west). The Area of this study is located in
folded - thrust zone of Zagros. It has been under the effect of several stresses. This has
resulted in the creation of faults, folding and joints in the rock. The objective of (RL-
PSPP) is to make use of the potential hydropower energy by utilizing pumping system of
the national electricity network under low-load conditions and generating energy by
means of the turbine and generator to meet the demands of peak loads in the country.
The geotechnical studies mostly aimed to review the underground geology and determine
the geotechnical parameters for designing the powerhouse. Table (1) presents
specifications of exploratory boreholes. Figure 3 also depict their locations. According to
the log of BH29 Borehole exactly drilled at the shaft location, the bedding was an
alternation of limestone to dolomitic limestone (Dalan-dolomitic limestone) derived from
the beginning to the elevation of about 2100 m and limestone (Dalan-limestone) obtained
from the elevation ranging from 2100 to about 1650 m (end of the borehole). The samples
were taken from the borehole drilled at (RL-PSPP) Site, presented in Table (1).
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Fig 1. Map showing location of RLPS

Fig 2. Dalan Limestone
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Table 1. Specifications of Drilled Exploratory Boreholes

Borehole Depth (m) Number of rock samples
BH-232 60 39
BH-233 60 31
BH-234 50 15
BH-235 100 20
HF-1 100 30
HF-2 46.6 5
D-1 61.5 20
D-2 50 17
D-3 50 18
BH-29 384 103
v B2 1
@j;,{ﬂ'f:/: o i St e st e A S
Sl *8H232 -
/7 g d
iy B E D
{1 i
il g

Fig. 3. Boreholes Location around Exploratory Gallery of Powerhouse Cavern Ceiling

As it was mentioned, laboratory experiments were carried out to determine the
geomechanical parameters of intact rock and rock masses around the underground
structures (powerhouse and transformer caverns) of Roud Bar Lorestan Pumped Storage
Power Plant project.

The preparation of the specimens was conducted according to the proposed ISRM
approach (2009)[46]. The ends of the specimens were cut and flattened to be accurately
perpendicular to the sample's axis. The specimens were smoothed and polished based on
the ISRM suggested methods, and also were inspected to be free of macroscopic
structures like cracks and other planes of weakness. In order to prevent any noise impact
in measurements, the preparation of samples was cautiously followed. The tests were
carried out in the laboratory under saturation condition.115 high-quality specimens were
eventually prepared with 54 mm to 82 mm diameters and the length-to-diameter

proportions of between 2 and 3.
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It is necessary to mention, Iran Water and Power Resources Development Company was
the owner of the RL-PSPP and Mahab Ghodss Consulting engineering company was the
project consultant and conducted the laboratory tests.

These specimens were subjected to a non-destructive ultrasonic test, and their P-wave
velocity was measured using a pundit tool. The estimates time and the transmitter-receiver
distance were used to calculate the P and S waves’ velocities. The real time interval across
the sample together with the time delay because of the electronic components, transducer
and bonds gives the travel time. Hence, separate measurement of the time delay for P and
S waves was first performed prior to measuring the travel time, using a standard such as
aluminum samples with specified velocities or face-to-face methods [47]. the design of
the transmitter aimed at generating wavelengths three times the rock’s mean grain size to
decrease the first arrivals at the receiver which were scattered and inadequately
characterized. Wavelength indicates the division of the wave velocity within the rock
sample by the transducer resonant frequency. Frequencies between 75 kHz and 3 MHz
are more common to use. Evaluations were made using the PUNDIT together with two
transducers, a transmitter, as well as a receiver with 1 MHz frequency. The ultrasonic
device is represented in Figure 4. Application of a constant stress around 10 N/cm2 in the
axial direction to the samples [46] aimed at improving the ratio of signal/noise. In
addition, surface contact of the transducers and samples was improved using an ultrasonic

couplant, significantly improving the ratio of signal/noise [46].

Fig. 4. Apparatuses of ultrasonic testing for determination of primary wave velocity (Vp),
and shear wave velocity (Vs)
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Following ultrasonic tests, the samples were tested by a uniaxial compressive strength
test to measure their static Young’s modulus and Poisson’s coefficients (Fig. 5). Also, the
porosity and density of the specimens were experimentally determined. The fundamental
statistics and probability plot of the results obtained from these experiments are given in
Table 2 and Figure 6.

Fig.5. Examples of failure modes observed in limestone loaded in the Uniaxial
Compression Test (Core specimens are ~82 mm in diameter)

Table 2. Basic statistics of the results obtained from the tests

Parameters Unit Symbol Minimum Maximum Mean Std.dev. VIF
Uniaxial MPa UcCs 23.06 188.85 93.83 34.12
compressive strength
Static Young’ modulus GPa Es 6.19 69.60 27.93 10.51
P-wave velocity m/s Ve 2088.8 6901.4 5504.87 898.48 1.508
Density kg/m?® P 2.60 2.78 2.70 0.028 1.104
Poisson’s ratio - 19 0.18 0.30 0.23 0.0274 1.364
Porosity % n 0.17 4.98 1.14 1.09 1.288

[ Downloaded from ndeal0.khu.ac.ir on 2025-10-31 ]
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Fig. 6. Probably plots of the results obtained from the tests

4.Model implementation and results

As it is clearly demonstrated in Table 2 and figure 6, these parameters have non-normal
distributions; therefore, these distributions should be transformed were normalized for
PCR and SVR. The correlation between rock parameters and output data were calculated
(Table 3). The results demonstrated that correlations between input and output parameters

are statistically significant through hypothesis testing.
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Table 3. Correlation between rock parameters and output data (values in bold are
different from 0 with a significance level alpha=0.05)

p v Vp n
ucs 0.194 -0.884 0.363 -0.307
Es 0.238 -0.832 0.324 -0.252

Combinations of Vp, p, v, n, were employed to estimate the UCS and Es of the limestone
rocks by PCR and SVR models. To develop and test the models, 80% of data was
randomly selected and assigned to the learning subset to be used for network training; the
rest 20% was assigned to the testing subset to be reserved for performance evaluation.
Different researchers have used different proportions of data for testing and training in
their studies. For the test dataset it can varies between 20 and 25% of data and the
remaining for training [48, 49, 50]. The performance of the PCR and SVR models was
evaluated by (R?), (NMSE), and (MAE). The result of PCR models for predicting UCS
and Es are shown in Table 4. To confirm the confidence of obtained results of PCR,

Analysis of variance is used (table 5, 6). F-test results showed that the PCR model is valid.

Table 4. Summary of the PCR for predicting UCS and E;

Train Test
Model
R?  NMSE MAE R? NMSE MAE
UCS 078 2245 0363 0.76 2251 0.357
PCR

Es 071 3423 0421 070 3424 0.440

Table 5. Analysis of variance for the result of PCR model for predicting UCS

Source DF Sum of squares ~ Mean squares F Pr>F
Model 4 79.160 19.790 81.259 < 0.0001
Error 90 21.919 0.244
Corrected
Total 94 101.079

Computed against model Y=Mean(Y)

Table 6. Analysis of variance for the result of PCR model for predicting Es

Source DF Sum ofsquares Mean squares F Pr>F
Model 4 66.104 16.526 53.266 < 0.0001
Error 90 27.923 0.310
Corrected Total 94 94.027

Computed against model Y=Mean(Y)

The optimal values of SVR model parameters were determined by using Particle
Swarm Optimization (PSO) method [51, 52]. PSO provide the excellent performance and

effective in finding the most optimal solutions. The PSO is a bioinspired stochastic
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optimization technique developed simulating social behavior of animals, as was the mass
movement of birds. In fact, the PSO algorithm consists of a certain number of particles
that randomly take the initial value. A particles considered as a bird in a swarm consisting
of a number of birds, and all particles fly through the searching space by following the
current optimum particle to find the final optimum solution of the optimization problem.
Optimal values of C (box constraint mode) and € (epsilon mode) were determined by PSO
for individual kernel functions. The best performance of PSO-SVR model for predicting
UCS and ES for training and testing data with respect to individual kernel functions are
shown in Table 7.

Table 7. Summary of the PSO-SVR for predicting UCS and Es

Model fljﬁ;tnizln . c : Train : Test
R NMSE MAE R NMSE MAE
) Uucs 0279 1 0.78 22.56 0.342 0.77 18.83 0.278
Linear Es 0593 100 0.70 34.33 0.470 0.66 20.31 0.460
Quadratic UCS 0.356 1 0.83 16.98 0.329 0.76 22.15 0.296
Es 0.85 1 0.73 29.11 0.450 0.70 25.67 0.372
SVR Cubic uUucs 1108 1 0.66 43.30 0.572 0.75 23.74 0.272
Es 0517 1 0.80 20.12 0.379 0.77 23.37 0.376
Gaussian  UCS  0.445 1 0.89 13.65 0.187 0.68 384 0.330
Es 0439 30 0.88 13.63 0.337 0.53 47.95 0.534

According to Tables 4 and 7, the PCR and PSO-SVR models showed reasonable accuracy
in estimating the UCS and Es of limestone. Quadratic-SVR, however, did the best in
estimating the UCS and cubic did the best in estimating the Es. Also, the calculated
Statistical indexes for the training and testing subsets were very much close to one
another, indicating the appropriacy of the modeling process and the resulting models. In
particular, with the help of quadratic kernel functions, PSO-SVR model could perform
the best in training and testing the data for the UCS. The training data set showed R?,
NMSE, and MAE values equal to 0.83, 16.98, and 0.329 for prediction of UCS,
respectively. Corresponding values for testing data were 0.76, 22.15 and 0.296,
respectively. Also, cubic kernel functions to predict Es: R?, NMSE, and MAE values
revealed 0.80, 20.12 and 0.379 for training data set. Corresponding values for testing data
were 0.77, 23.37 and 0.376, respectively. In Table 8 some of the former works in which
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different prediction techniques are used have been presented. It can be inferred that our
results are comparable with some of results in this table. The results obtained from PCR
and PSO-SVR model were plotted against the actual measurement in Figures 7 — 16. All
the points, including those pertaining to the trained and tested cases, were almost located
within the angle bisector.

Table 8. Comparison some of the former works in which different prediction techniques
reported in the literature

References Technique Input Output R?
Gokceoglu[23] FIS PC ucCs 0.92
Gokceoglu and FIS Vp, BPI,PLS, TS UCS, Es 0.67 for UCS, 0.79 for E
Zorlu[9]
Sonmez et al. [16] ANN ucCs, Uw Es 0.67
Karakus and
Tutmez[25] FIS PLS, SH, Vp ucs 0.97
Zorlu et al. [18] ANN PD,C,Q UCs 0.67
Yilmaz and
Yuksek[10] ANFIS SH, PLS, WC, Vp UCS, Es 0.94 for UCS, 0.96 for E
Gokceoglu et al. FIS cc. sD UCS 0.88
[24]
Canakci et al. [32] GP Vp, WA, q UCS 0.88
Dehghan et al.[11] ANN n, SH, PLS, Vp UCS, Es 0.86 for UCS, 0.77 for E
Cevik et al. [13] ANN SD, CC UCs 0.97
Yagiz et al. [17] ANN uw, Sg'bn' VP ucs, E 0.50 for UCS, 0.71 for E
Singh et al. [15] ANFIS PLS, g, WA Es 0.66
Mishra and
Basu[26] FIS BPI, PLS, SH, Vp UCsS 0.98
Beiki et al. [31] GP g, n, Vp UCS, Es 0.83 for UCS, 0.67 for E
Ceryan[12] SVR n, PDI UCsS 0.77
Momfgé]et al) " psoANN g, Vp,PLS, SH ucs 0.97
TonnizamMohama
d et al. [34] PSO-ANN PLS, TS, q, Vp UCsS 0.97
0.89 for UCS (unpruned), 0.84 for Es
. UW, SH, n, Vp, (unpruned);
Ghasemi et al .[2] MBSP sD UGS, B 0.80 for UCS (pruned), 0.87 for Es
(pruned)
Jahed'zﬁm[%%ha”' & |CA-ANN SH, PLS, Vp uCs 0.94
PCR. PSO- 0.78 for UCS, 0.71 for Es (PCR). 0.83for
This study S’VR Vp, p, v, 1, UCS, Es UCS (quadratic-SVR), 0.80 for Es
(cubic-SVR)

Equotip hardness (EH),quartz content (q), grain size (GS), rock type (RT),petrographic composition (PC), block punch
index (BPI), point load strength (PLS),tensile strength (TS), unit weight (UW), schmidt hardness (SH),packing density
(PD), concave—convex (C), water content (WC), clay content (CC), slake durability index (SD), water absorption (WA),
P-durability index (PDI), artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro-fuzzy inference
system (ANFIS), genetic programming (GP), imperialist competitive algorithm (ICA)
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Figures 7 and 8 show the results of the values predicted in the PCR method for UCS
and elastic modulus, respectively. It is clearly obvious that these estimated values by PCR
for UCS show less dispersion and fall closer to 45 degree line. However, PCR method is
less accurate than UCS in estimating the elastic modulus while greater dispersion is
observed. Also, the predicted values for UCS parameters which had been optimized by
SVR method and obtained by PSO method are shown in figures 9-11. As Figure 9 shows,
the dispersion is high when a linear function is used and a significant difference is
observed between the values obtained from the model and the actual values. In addition,
Figure 11 indicates that the best prediction belongs to the Gaussian function. Figures 12
to 16 also show the performance of the SVR method in estimating the elastic modulus. In
this case, it is observed that the results from the linear function in the SVR method are
weaker than the other cases while a considerable dispersion is seen in the results. Fig. 15
shows that the best results are obtained when the SVR method is used along with a
Gaussian function. It should also be noted that cubic and quadratic functions fall between
the linear function and the Gaussian Function in terms of accuracy.

An examination of Table 8 shows that the neural network and fuzzy systems were
traditionally used in estimating the elastic modulus and compressive strength of rocks.
One of the methods used in the present study is PCR that has not been used previously.
The results of this method are comparable to the methods listed in Table 8. This study
also made use of SVR method in combination with the PSO optimization algorithm. Here,

the optimization algorithm is used to solve the local minima problem.
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5.Conclusions

In this study, two techniques of support vector regression (SVR) and principal
component regression (PCR) were used to model the elasticity modulus and uniaxial
compressive strength of limestone rocks. Parameters of compressive wave velocity,
density, porosity, and Poisson’s ratio were used to empirically model the uniaxial strength
and elasticity modulus. As mentioned in the introduction, various methods have been used
to estimate target parameters using data mining methods. One of the usual methods is
regression. One of the problems of regression method is the multicollinearity between
input parameters, and also one of the major flaws of statistical relationships is estimating
average values, which perhaps can lead to overestimating the low values of UCS and Es,
and vice versa. But, the PCR method compared to other regression methods, it has the
following advantages: Dimensionality, reduction, Avoidance of multicollinearity
between predictors and Overfitting mitigation. Another commonly used technique is the
neural network. The major disadvantages of neural networks are the local minima
problem and greater computational burden. The SVR method comparison with the neural
network does not have the local minima problems, SVR method are considered the
nonlinear relationships between parameters, and the error rate is controlled. Comparison
of the results of implementing two methods showed that both could estimate the desired
parameters with acceptable accuracy. Modeling was performed using four linear,
quadratic, cubic and gaussian functions. Based on the obtained results, the SVR method,
with the help of quadratic kernel functions, yielded the best result for estimating UCS and
cubic kernel function yielded the best result for estimating Es.

Finally, it can be declared that the target parameters could easily and accurately be
estimated by applying the two methods used in this study and these models can be used

for other carbonate rocks with similar physical and mechanical parameters.
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