Soroush Mahdavian, Navid Rashidi, Ali Raeesi, Jamal Abdullahi,
Volume 19, Issue 1 (Spring 2025)
Abstract
Clay soils typically have low strength and a high swelling percentage. They are considered as problematic soils in Civil Engineering projects. This research study examined the effects of magnesium chloride (MgCl2) solution on the clay soil improvement through conducting laboratory experiments. The experimental program included Atterberg limits, compaction, swelling, unconfined compression strength (UCS) and Scanning Electron Microscopy (SEM) tests. Available clay soil in the Lab was mixed with MgCl2 solution at weight percentages of 3%, 5%, 7% and 10% Samples for the swelling and strength tests were made using thestatic compaction method. The moisture and dry unit weight of the prepared samples were the same as those of thecorresponding compaction curves. The strength test results showed that the final strengths of the samples with 3% MgCl₂ at 7-, 14-, and 28-day curing times were 1401, 2018, and 1848 kPa, respectively. The results also showed that a reduction in strength of the samples occurred with more than a 3% solution of MgCl₂. For samples with 10% MgCl2 solution, the strength decreased until 14 days of curing time, but increased thereafter. Additionally, the results indicated that the reduction in swelling percentage compared to natural soil was 4.95%, 3.98%, 2.8%, and 3.9% for samples with 3%, 5%, 7%, and 10% MgCl₂, respectively, showing that the reduction in swelling depends on the MgCl₂ percentage. Additionally, the SEM results showed that the improvement in the soil was due to chemical reactions between the soil and MgCl₂.