Search published articles


Showing 16 results for Ghanbari

Ali Ghanbari, Mohsen Sabermahani, Yaser Afsharipur,
Volume 4, Issue 1 (AbstractE3.pdf 2010)
Abstract

A new approach is suggested to determine the permanent deformation of slope under seismic loading based on the horizontal slices method and limit equilibrium analysis. A comparison of the analytical results obtained from the proposed method for 3 sample slopes with those of previous research results is performed. The analytical method presented can be used to calculate yield acceleration, seismic coefficient of horizontal acceleration, permanent deformation and angle of failure wedge for slopes. Also, the stability analysis can be performed by proposed method. It was concluded that the horizontal slices method by analytical procedure proposed reliably calculates the permanent deformation of slopes.
Zohreh Safipoor Rashvanlu, Ali Ghanbari, Seyed Jamal Zakariaee,
Volume 5, Issue 1 (9-2011)
Abstract

The ever increasing growth and development of the metropolitan city of Karaj in recent years has placed implementation of basic studies on Alluvium of Karaj Plain on the top of significant priorities of the region’s development projects. Therefore, in the present paper, the alluvium of South Karaj was studied based on relevant numerous geotechnical laboratory and field tests. In this regard, an area from Pol-e Fardis to Serāh-e Andishe with a length of 10 km is selected and the geotechnical engineering features of this area were taken into careful consideration and study. The carried out studies divide South Karaj Alluvium into five independent parts whose engineering description are presented. On the other hand, since the results of most of relevant laboratory and field tests have been collected, some relations for calculating Elasticity Modulus, Soil Inner Friction Angle as well as other geotechnical parameters in South Karaj Alluvium are introduced. Finally, the process of soil classification in South Karaj Alluvium is compared with the same process in other regions of Karaj, and, given the soil engineering features of Southern part of South Karaj Alluvium, some suggestions are presented for optimization and facilitation of future development projects in south Karaj Alluvium. Geotechnical studies.
Ali Ghanbari, Mohsen Mojezi, Meysam Fadaee,
Volume 6, Issue 2 (4-2013)
Abstract

Construction of asphaltic core dams is a relatively novel method especially in Iran. Iran is located in a region with high seismicity risk. Therefore, many researchers have focused on the behavior of such types of dams under earthquake loading. In this research, the behavior of asphaltic core rockfill dams (ACRD) has been studied under earthquake loading using nonlinear dynamic analysis method and a new method is presented to assess seismic stability of these types of dams in earthquake conditions. Based on nonlinear dynamic analysis, the current study attempts to provide an appropriate criterion for predicting the behavior of earth and rockfill dams considering real behavior of materials together with actual records of earthquake loading. In this method, the maximum acceleration of the earthquake record (PGA) increases until instability conditions. Finally, a new criterion is presented for evaluating seismic safety of ACRDs via demonstrating curves of the crest's permanent settlement and maximum shear strain against maximum earthquake acceleration. Results of the proposed criteria can assist designers of asphaltic core dams to predict dam stability during earthquake event
Ali Attarzadeh, Ali Ghanbari, Amir Hamidi,
Volume 9, Issue 1 (6-2015)
Abstract

The objective of this paper is to investigate the bearing capacity of strip foundations next to sand slope. A series of laboratory model tests has been carried out and a new correlation coefficient to estimate the bearing capacity of shallow foundations near slopes is presented. The sand layers were prepared in a steel test tank with inside dimensions 500 ´ 200´ 250 mm. After vertical loading, the applied load and displacement of foundation were recorded and stress-settlement curve is drawn. Finally, the load at which the shear failure of the soil occurs is recorded as ultimate bearing capacity of foundation. The test sand used in this study was Babolsar sand with relative density of 50%. The relative performance of different distance of foundation from the edge of slope and inclination angle of slope are compared using same quantity of soil properties in each test. The results indicate that with increasing distance from the edge of the slope, bearing capacity increases linearly. Also with increasing slope angle, the bearing capacity has declined linearly
M Davoodi, Ali Ghanbari, S. Abedini,
Volume 9, Issue 3 (12-2015)
Abstract

The pseudo-static analysis is one of the conventional methods in embankment dams design and International Commission on Large Dams (ICOLD) suggests using this method before ultimate dynamic analyses. In this research, the static, pseudo-static and dynamic analysis of Masjed Soleyman embankment dam was performed. Using dynamic and pseudo-static analyses results, the safety factor of critical sliding surface was calculated. Permanent displacements of critical sliding surface were evaluated by New mark method and the calculated safety factor was compared. Based on the comparison results in different water levels of the reservoir and by introducing a new equation, the variable horizontal acceleration coefficients in height of the dam body were calculated. Finally, the obtained horizontal acceleration coefficients were compared with the other criteria introduced in different embankment dam's design codes. Totally, the results indicate that the proposed method leads to a larger horizontal acceleration coefficient in higher parts of the dam body.
V Shirgir , A Mohammad Amiri , A Ghanbari , M Derakhshandi ,
Volume 10, Issue 4 (Vol. 10, No. 4 Winter 2017 2017)
Abstract

Free vibration of soil often occurs during earthquakes. Since the vibration caused by earthquake does not have (steady state harmonic vibration) continuity, the alluvium vibrates with its natural frequency between two natural seismic waves. This study evaluates the effect of piles on the period of free vibration of a soil layer using numerical method. In the first stage, using analytical equations for calculation of vibration period of a soil layer and a column with continuous mass, the results were analyzed by the software. In the second step, piles with the same dimensions and distance were added step by step, and the vibration period for the soil layer with piles was calculated. The friction or floating effects of the piles on alluvial soil vibration period was also examined. The results show that as the number of piles increases, the differences between the results of one dimensional analysis of alluvium soil and the results of the software become different, and this creates the need for specific arrangements for seismic analysis of this kind of alluvium (with inserted piles). The results also suggest that end-bearing piles have a greater effect on alluvial soil vibration period, and with increased amount of the floating of these piles, these effects decline.


 


A Erfani , A Ghanbari , A Massumi ,
Volume 10, Issue 5 (2nd conferences on earthquake engineering (Alborz Province) 2016)
Abstract

Previous earthquakes have shown that topographic irregularities have significant impacts on the site seismic response and increasing structural damage by amplifying seismic responses. Studies on seismic behavior of slope topographic have shown that dynamic response of free field and soil-structure system is severely on the influence of topography shape and soil properties. Angle and height of slope, frequency of excitation, nonlinear behavior of soil and depth of bedrock are other parameters that affect on the response of the entire system. Furthermore the studies have shown that presence of structure adjacent to slope is very effective on variation of seismic behavior pattern of this topography but these studies are very limited. In this study the effect of existing structure adjacent to slope to seismic behavior pattern of slope topography have been investigated. The parameters that have studied in this article comprise slope angle and frequency content of excitation. The results show that the presence of structure adjacent to the slope, causes an increase to the response of free field and transmitting maximum response to distance away from structure position.


J Mohammaditekantape, Ghr Nouri, Ali Ghanbari,
Volume 11, Issue 1 (Vol. 11, No. 1 Spring 2017 2017)
Abstract

./files/site1/files/6Extended_Abstract.pdfExtended Abstract
(Paper pages 115-134)
Introduction
Different factors should be considered in investigating soil- structure interaction for which we can refer to underground layers material properties, site shape and topography and entry motion. It has been showed that seismic waves will be reflected and makes more strange seismic waves in comparison with the state of without slope. To investigate the topography effects the various assumptions such as considering the rigid and compliant bedrock, half space, stimulations with different frequencies, slopes with different angles, different heights of slopes, and soil type were evaluated.  In this study topography effects on interstory drift of three structures with steel moment resistant frame system is considered, for this aim 6 combined model of soil- structure and topography is investigated. Three structures of 6, 9 and 12 story placed in near and far from of crest of a slope and 10 earthquake on bedrock has been applied to models. Interstory drift is considered as a criteria for investigating topography effect.
Material and Methods
This paper examines 3 planar steel moment resistant frame (SMRF) which have been previously designed by Karavasilis et al (2007) according to EC3 and EC8. These structures have 3 bays, and 6, 9, 12 stories. The length of each bay and the height of each story are 5 and 3 m, respectively. Furthermore, the amount of dead and live loads are considered in accordance with the current study (Minasidis et al 2014). The study frames were modeled in ABAQUS software in the form of two-dimensional (Figure 2). A36 steel is used in the models and the yield strength of steel is 235 MPa. Modeling of the behavior of steel was implemented using the yield criterion of VON MISES and taking into account the non-linear behavior of materials and Poisson's ratio of 0.3. A kinematic material hardening of 3% is assumed for the nonlinear elements and a Rayleigh damping of 5% is assumed for the first two modes of each frame.
In this study,   a slope with α=20 is considered. The characteristics of the slope and the soil of the region are obtained by borehole in different point based on Ghanbari et al 2011 study.




Figure1. Growth percentage in average amount of interstory drift
The desired slope has a height of 30 m. The depth of the bedrock is considered equal to 60 m. The numerical analyses were performed with the Finite element method, for nonlinear soil with VS=238 m/s, Poisson’s ratio v=0.35 and mass density ρ=1800 kg/m3. Moreover, to estimate the distribution of response, 10 records located on the bedrock (shear wave velocity is more than 650 m/s) have been used. To reduce the near source effect records are selected in such a way that they have no pulse in velocity time history and Distance from source to site greater than 10 km considered
Result
Result showed that interstory drift of structures increases due to topography effects, but this increase varies for different structures and earthquakes. Growth percentage in average amount of interstory drift are 25, 15 and 6 percent for structures with 6, 9 and 12 story respectively. Also for structure 9 and 12 story, interstory drift was decrease in some stories.
 
 

Fariborz Dehghani, Hadi Shahir, Ali Ghanbari,
Volume 11, Issue 3 (Vol. 11 No. 3 Autumn 2017 2018)
Abstract

In the narrow geosynthetic-reinforced retaining walls a stable rear wall exists in a short distance and so there is no enough space to extend appropriate length of reinforcements. In this case, the probability of overturning of retaining wall increases especially when subjected to earthquake loading. To increase the stability of the wall, reinforcements may be connected to the stable rear surface. Alternative solution is the utilization of full-height cast in-place concrete facing in order to resist the earth pressure by combined actions of reinforcements pullout capacity and facing flexural rigidity. One of the main questions about this type of walls is the portion of earth pressure resisted by the facing. In this study, the seismic earth pressure of narrow geosynthetic-reinforced backfill on rigid facing was evaluated using limit equilibrium approach and horizontal slices method. The critical failure surface was assumed to extend linearly from the wall toe to the rear surface and then moves along the interface of the backfill and rear surface up to the backfill surface. The effects of various parameters such as wall aspect ratio have been investigated. The obtained results show that the applied soil pressure on wall facing will be increased with depth in the upper part of the wall according to the Mononobe-Okabe equation, but its pattern is inversed in the lower part of the wall and it decreases until it reaches to zero at the wall toe. The results of analyses indicate that the attracted soil thrust by the facing increases with lessening of backfill width.
Mahmoud Ataee , Saeed Ghanbari ,
Volume 12, Issue 1 (Vol.12, NO.1 Spring 2018)
Abstract

Drilling and cutting stones as types of the engineering operations have encountered a lot of extensive and determining applications in different technical and engineering aspects of the mining. Estimating the drillability and cutability of stones by using drilling equipment and diamond wire saw have important roles in estimating the expenses and also designing mines. In this article some samples of carbonate ornamental stones from different mines in Iran have been studied in order to estimate and predict the drilling and also cutability rate.
In order to evaluate the effect of the textural specifications on the rate of drilling and cutability, first a picture was provided from the thin microscopic surface of every stone sample and then the area, perimeter, diameter the longest diagonal and the shortest diagonal of the grains in the sections were determined and the other textural specifications were also determined through using mathematical relations and equations. After that the relationship between the abovementioned parameters with the drilling and cutting rate were determined by using univariate fitting. And finally to achieve more correlation coefficient multivariate fitting was applied for the data. Among the textural specifications affecting the drilling rate textural coefficient, the diameter of the grain, dequi, the ratio of the grain condition and the index of grain size homogeneity had a significant relationship with the drillability rate and also among those affecting the cutting rate, textural coefficient, the diameter of the grain, dequi, density, shape factor, index of interlocking, and the index of grain size homogeneity had significant relationships with the cutting rate and at the end the final equation to predicate the drillability and cutability was produced for these parameters../files/site1/files/121/AleeiAbstract.pdf
Sassan Narimannejad, Alireza Jafari-Nedoshan, Ali Massumi, Abdollah Sohrabi-Bidar, Ali Ghanbari1,
Volume 12, Issue 2 (Vol. 12, No. 2, Summer 2018 2018)
Abstract

Introduction
Local site conditions considerably influence all characteristics of the ground strong motion including the domain, frequency content, and duration. The level of such an effect could be considered as a function of geometry, properties of the materials embedded in the underlying layers, the site topography, and properties of excitement. Site effect fall into two categories: a) the effect of the surface soft layers triggered by the shear velocity differences between the soil layers and b) the surface and subsurface topography effects that lead to the wave reflection and refraction based on the site geometry, and subsequently enhance the level of amplification.
Since most cities have been constructed in the vicinity of or on sedimentary basins, geotechnical earthquake engineering devotes particular attention to effects of the sedimentary basins. Basin edge curvature deposited with soft soils are capable to trap the body waves and generated surface waves within the deposit layers. Such waves could create stronger and lengthier vibrations than those estimated in a 1D analysis that assumes the shear waves to be vertically propagated.
Although critically important, the 2D effect of the site has not been included in seismic codes and standards of the world. This might be due to the fact that the site effect depends on a number of parameters such as the site geometry, the type of wave excitement, properties of the materials, etc. that in return make it almost out of the question to make predictions about the effect. This study was an effort to compare the responses of four sedimentary basins with hypothetical geometries of rectangular, trapezoidal, elliptical, and triangular shapes in order to examine the effect of the geometrical shape of the basin on its responses and the extent of the response sensitivity to the excitation frequency of the wave. The study assumed the edge to depth proportion to be both constant and equal in all four basins so that the effect of the geometrical shape could be equally examined and compared in all four basins.      
Material and methods
In order to validate the results of the sedimentary basin modeling, firstly, ABAQUS finite element software was used to create a free field motion of a semi-circular alluvium valley in accordance with Kamalian et al. (2006) and Moassesian and Darvinsky (1987).  Then, the results from the model were compared with those from the above mentioned studies. The following descriptions are to present the model in details.
To evaluate the geometrical effect of the sedimentary basin on its response, the authors relied on the software to examine four sedimentary basins with the fundamental frequency (2.04 Hz). The basins enjoyed rectangular, trapezoidal, elliptical, and triangular geometrical shapes with a constant edge to depth proportion (49m to 300m respectively). The implicit method was also applied to perform the dynamic analysis. The materials were all viscoelastic and homogeneous. The soil behavior/treatment model was considered to be of a linear nature.  The Rayleigh damping model was used to specify the damping level. The soil element was a plane strain and SV waves (the Ricker wavelet) were used for seismic loadings in a vertical dispersion. The side boundaries (right and left) of the model were of a combinational type (viscous and free field boundaries); the down side boundary was composed of viscous. To achieve higher levels of wave absorptions, heavy columns were used as the free filed columns.
Next, it was the time to conduct the 1D analysis of the site. Three waves were in use in order to examine the effect of the frequency content of the excitation load on the basin response: 1) a wave with the dominant frequency of 1Hz that was out of the frequency range of all basins (2.04 Hz), a second wave with the dominant frequency of 2Hz that was close to the fundamental frequency of all basins, and a third wave with the dominant frequency of 4Hz. The waves were applied to a 2Dmodel. The results were compared with those obtained from a 1Dmodel in terms of the timing.
Then, the basin responses to all three waves (1, 2, and 4 Hz) were subjected to an individual analysis in order to examine the sensitivity of each basin response to its geometrical shape. Results indicated that while the responses of the rectangular and trapezoidal basins were significantly more sensitive to the excitation frequencies, the elliptical and triangular basins showed more stable behaviors to such frequencies. The final stage of the study was dedicated to examine the site 2D effect during the ground motion.
Results and Conclusions
According to the results of the present study, it could be suggested that the geometrical shape of the sedimentary basin has a significant effect on the responses of the field of seismic waves and that it could result in so different responses from the ones attained after a 1D analysis of the site. In addition, the pattern of the seismic waves’ responses is highly dependent on the geometrical shape and the frequency content of the seismic load. Also, the location where the maximum horizontal acceleration occurs along with the sedimentary basin depends on the excitation wave and varies accordingly. Further, it could be suggested that the site 2D effect results in both considerable amplification and an increase in the length of ground motion.
The results of the 2D analysis showed remarkable differences with their 1D counterparts: a 1.45 larger response for the rectangular basin, a 1.28 larger response for the trapezoidal basin, a 1.22 larger response for the elliptical basin, and a 1.19 larger response for the triangular basin.
With the frequency of 1 Hz where the excitation frequency is out of the basin range (i.e. the excitation frequency is below the lowest frequency of basin), the sedimentary basin did not show any signs of amplification and chaos (unlike two other frequencies); instead, it was a cause for de-amplification.
The frequency of 2 Hz that is subject to resonance resulted in amplifications (absent in 1D analysis) and there are traces of a reduction in the acceleration responses near to the edges of the basins. The proportion of the amplification (in the center of the basins) in 2D to 1D analysis was 1.4 for the rectangular basin, 1.28 for the trapezoidal basin, 1.22 for the elliptical basin, and 1.15 for the triangular basin.
 
Seyed Taha Tabatabaei Aghda, Ali Ghanbari, Gholamhosein Tavakoli Mehrjardi,
Volume 13, Issue 2 (Vol. 13, No. 2 2019)
Abstract

Introduction
In some ports, the dredging and accumulation of a large amount of sedimentary material turned to a serious challenge, because of their sequent environmental and economic effects. These problems clarify the necessity of reusing dredged materials. Often, owing to their poor mechanical properties, they are not applied directly in technically engineering uses, so they require to be improved. Geocell application is one of the methods used for the improvement of soil behavior, which confines the sand mass through itself in the three-dimensional structure. These methods ease the speed of applying emerged it into a perfect option for stabilizing of the granular soil.
 In Shahid Rajaee port, by the dredging process for developing new phases, a large amount of calcareous sand is being accumulated near the Persian Gulf coastline. Therefore, in order to provide a solution to reuse these materials, this study attempts to investigate the beneficial influence of reinforcing sand by geocell on its load-beneficial behavior experimented by the plat loading test. For this purpose, a large scale model including circular foundation on reinforced and unreinforced sand has been employed under cyclic loading process.
Material and Methods
Soils
Two types of soils were used in this study. The first type was the sand derived from the dredging process of Shahid Rajaee port which has been used in different layers of the models. The second type of soil was well-graded gravel which has been used only in the cover layer.
Geocell
The geocell in this study were made of heat-bonded non-woven polypropylene geotextiles. Single cells were 110 mm long, 100 mm wide and 100 mm height.
Plate load test
In order to determine the bearing capacity of backfills, repeating plate load test was used with 150 mm diameter. Loading process included four stress levels (250, 500, 750 and 1000 kPa) consisting of 10 cycles each.
Test backfills
Four backfills was made by manually compacting the dredged sand, with tamper up to 350 mm in reinforced cases and 450 mm in unreinforced cases. Then geocells placed and dredged sand filled with accuracy in cells. Finally, a 50 mm thick sand or gravel cover layer, was placed. All lifts were compacted to 70% of relative density with 4% moisture content.
Results and Discussion
PLT results are summarized in Table 1. According to the results, only geocell reinforcement backfills can carry standard truck wheel load (550 kPa). Geocell can increase the ultimate strength of backfills with a sand cover layer by 70% (from 416 kPa to 725 kPa) while in backfill with a gravel cover layer showed 80% increase (from 520 kPa to 960 kPa) in ultimate strength. The gravel cover layer in unreinforced backfills increases the ultimate strength by 25 percent (from 416 kPa to 520 kPa).
Table 1. Results of PLT and performance ratings
Backfill name UR-S GR-S UR-W GR-W
Maximum stress (kPa) 416 725 520 960
Settlement at failure (mm) 4.6 9.0 15.5 14.9
Plastic settlement (mm) 3.5 7.0 12.5 12.0
Number of load cycles 10 20 20 30
Bearing capacity ratio (BCR) 1 1.74 1.25 2.32
Performance rating 4 2 3 1
Base on Table 1, bearing capacity ratio (BCR) has been increased up to 2.3 and has best when geocell reinforcement and gravel cover layer were used together. Geocell utilization as reinforcement for sand backfills, improves the stress-settlement behavior. Dredged sand can be used as backfill material for yards and access roads when reinforced with geocell and covered with a layer of well-graded gravel../files/site1/files/132/3Extended_Abstracts.pdf
Mr Alireza Darvishpour, Dr Ali Ghanbari, Dr Seyyed Ali Asghar Hosseini, Dr Masoud Nekooei,
Volume 13, Issue 5 (English article specials 2019)
Abstract

One of the effective parameters in the dynamic behavior of reinforced soil walls is the fundamental vibration frequency. In this paper, analytical expressions for the first three natural frequencies of a geosynthetic reinforced soil wall are obtained in the 3D domain, using plate vibration theory and the energy method. The interaction between reinforced soil and the wall is also considered by modeling the soil and the reinforcement as axial springs. The in-depth transverse vibration mode-shapes, which were impossible to analyze via 2D modeling, are also analyzed by employing plate vibration theory. Different behaviors of soil and reinforcements in tension and compression are also considered for the first time in a 3D analytical investigation to achieve a more realistic result. The effect of different parameters on the natural frequencies of geosynthetic reinforced soil walls are investigated, including the soil to reinforcement stiffness ratio, reinforcement to wall stiffness ratio, reinforcement length, backfill width and length to height ratio of the wall, using the proposed analytical expressions. Finally, the results obtained from the analytical expressions proposed are compared with results from the finite element software Abaqus and other researchers’ results, showing that the proposed method has high accuracy. The proposed method will be a beginning of the 3D analytical modeling of reinforced soil walls.
 


Mr Vahid Yousefpour, Mr Amir Hamidi, Mr Ali Ghanbari,
Volume 13, Issue 5 (English article specials 2019)
Abstract

Sandy soils usually contain different amounts of fines like silt and clay, causing some changes to their shear strength and dilation characteristics. Bolton [1] conducted  some experiments on the different sands and suggested a relation between the parameters of the soil shear strength. In this paper, some experiments were performed on fine contained sand and the extended Bolton's relation was has been proposed. In this paper, shear strength and dilation behavior of a pure sand mixed with different amounts of silt or clay fines were studied using direct shear test device (100*100*30 mm), and a total of 96 tests were carried out. The samples were prepared separately using clay and silt contents of 0, 10, 20 and 30% in different relative densities of 70, 80, 90 and 100%. They were tested under three surcharge pressures of 90, 120 and 150 kPa, under particle crushing threshold. Variations in shear strength, maximum friction angle, critical state friction angle and cohesion, as well as dilation angle were investigated by increasing in the mentioned amounts. The results demonstrate that shear strength, dilation angle, maximum friction angle decreased by clay content increase, however, they increase with increase in silt content. In addition, a new form of the Bolton's relation for fine contained sandy soils was presented.
Shima Sadat Hoseini, Ali Ghanbari, Mohammad Ali Rafiei Nazari,
Volume 14, Issue 2 (8-2020)
Abstract

Introduction
The discussion of modeling the interaction of soil-pile groups due to a large number of parameters involved in is one of the complex topics and it has been one of the interests to researchers in recent years and has been dealt with in various ways. In recent years, the artificial neural network method has been used in many issues related to geotechnical engineering, including issues related to piles.. In this study, firstly it was tried to explain the importance of soil - structure interaction in calculating the dynamic response of bridges. Then, the effect of different effective parameters in calculating the interaction stiffness of the pile - soil group using artificial neural network was studied.  For this purpose, firstly, Sadr Bridge ( The intersection of Modarress and Kaveh Boulevard because the presence of tallest piers ) in the transverse direction, considering and without considering of the effect of soil - structure interaction was analyzed. The analysis was carried out in which the substructure soil was replaced with a set of springs and dashpots along the piles. Considering the fact that many factors are involved in determining the equivalent stiffness of springs, in the second stage, the effect of different factors on the stiffness of spring equations using artificial neural network was investigated. Finally, the artificial neural network method was used as a suitable method in order to estimate the equivalent stiffness values, the equivalent stiffness of the pile - soil group was introduced for different input values. equivalent stiffness of the substructure soil using the artificial neural network ,has not been used by researchers yet, so estimation of the optimal length and diameter of piles used in constructions and estimating the seismic performance of the bridge system after its implementation could be effective .
Material and methods
In this paper, spring-dashpot method is proposed to the non-uniform analysis of single-pier bridges which led to a 5-degree freedom model in the case of Sadr Bridge. This study also endeavors to investigate the SSI effect in dynamic analysis of bridges. This method is based on the traditional spring-dashpot method but in this method, non-linear stiffness is used along the piles, instead of linear stiffness and upgraded shape functions and coefficients are applied to make more precise mass, stiffness and damping matrices. Then the seismic responses of Sadr Bridge are compared in different conditions including or excluding the SSI effects. Considering the fact that in the present study to calculate the stiffness of the soil-pile group at depth, due to the effect of soil - structure interaction, the recommended method by API is used, the study of neural network analysis was used and the effect of different parameters used to determine the complexity of the soil-pile group system has been evaluated. The multi-layer feeder network, which has the most application in engineering issues, has an input layer, an output layer and one or more layers of hidden content, has been used for this purpose.  The best model of the neural network with a topology of 1-20-6 was provided using the hyperbolic sigmoid activation function, and the Levenberg Marquardt model and the training cycle 84, which had the least error mean square and the best regression coefficient. The effect of internal friction angle, soil density, pile diameter and the resistance per unit length has been evaluated with this method.
Results and discussion
[8] ارائه شده است صورت می پذیرد In this study, the importance of considering the effect of soil - structure interaction on the dynamic response of the Sadr Bridge was studied. Dynamic stiffness of the soil around the pile group was calculated based on the equivalent linear method and using the p-y springs. So, the effect of substructure soil was considered in dynamic analysis of the system . The artificial neural network was used to predict the stiffness of the soil - pile group, based on various input parameters and the stiffness sensitivity analysis of the calculated output values was conducted. In hard soils, the stiffness of the pile - soil group increases with increasing the diameter of the pile in the range of 1 to 1.5 m in diameter. However, in the range of 0.5 to 1 m in diameter, the diameter of the pile does not have much effect on the stiffness of the system and also stiffness decreases in the range of 1.5 to 2 m in diameter by increasing the pile diameter. Soil specific weight and angle of internal friction can change the system stiffness but the effect of the soil specific density is much greater on the stiffness of the soil-pile group system. Generally, the specific density in the range of 1000 to 2300 (kg/m3) will increase the stiffness of the system. In general, the ultimate strength of the soil among 100 to 550 (kN/m) affects the system stiffness. This effect within the ultimate strength between 100 and 220 (kN/m) causes increasing in the interaction stiffness value of the system and in the range of 220 to 550 (kN/m) causes reducing the stiffness of the system . The ultimate strength values ​​in a unit of length outside of the above range have little effect on the system interference stiffness. Despite the fact that the problem of calculating the soil - pile interaction stiffness is a direct solution, the use of the proposed neural network model can help in predicting optimal values ​​of diameter and length of the pile to achieve maximum soil- pile stiffness and especially for long bridges it will has a significant impact on reducing cost and seismic design of the bridge.
Conclusion
The results of this study are as follows:
The results showed that considering the interaction effect, although it increases the relative displacement of the deck, reduces the maximum base shear and moment. This suggests that considering the maximum base shear and moment in the interaction conditions may not lead to a seismic design for certainty, although closer to reality.
Artificial neural network is an efficient way and new method to predict the stiffness of the soil-pile group system based on different input values that have not been used yet. So that with the physical and mechanical properties of the soil as well as the geometric properties of the piles, it is possible to predict the interaction stiffness values with the proper precision.
According to the results and diagrams obtained from the neural network model, which are mainly sinusoidal, the optimal values ​​of the interaction stiffness can be obtained by obtaining the pile diameter, specific gravity, the internal soil friction soil to achieve optimal interaction strength. It is also possible for each site to estimate the depth of the piles in order to achieve optimal hardness. 
./files/site1/files/142/4Extended_Abstracts.pdf
Mr. Mohammad-Emad Mahmoudi-Mehrizi, Prof Ali Ghanbari,
Volume 14, Issue 5 ( English articles 2020)
Abstract

The use of piles, helical anchors and, in general, helical foundations has considerably increased in the last 30 years. The adoption of this technology in the international and domestic codes of each country, as well as in research and studies, and, finally, the publication of numerous books and papers in this area, and the existence of manufacturers’ products, committees, and contractors of this technology has contributed to its expansion and development. However, such methods have progressed at a very slow pace in many countries, especially in developing countries. This paper attempts to assess the global advancement of the helical foundations by reviewing 292 papers from 1990 to 2020 and comparing the related research findings. This will help clarify the issue and determine the scope of technological progress. On the other hand, collecting valuable papers in this area will make it easier for researchers to make further research. Subsequently, the characteristics of this technology are highlighted and the reasons for its lack of progress in the developing countries are addressed. For this purpose, a questionnaire is sent to researchers, developers, designers, and contractors of the geotechnical projects. The purpose of this questionnaire is to specify the type of existing projects, the soil type of project site, the degree of familiarity with the helical foundation technology, the reasons for not using this method and the solutions available to expand and develop this method. Finally, there are suggestions to develop this approach and the issues that need further research.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb