Search published articles


Showing 2 results for Haddad

Abdolhosein Haddad, Hamed Javdanian, Faezeh Ebrhimpour,
Volume 11, Issue 1 (Vol. 11, No. 1 Spring 2017 2017)
Abstract

./files/site1/files/2Extended_Abstract.pdfExtended Abstract
(Paper pages 29-50)
Introduction
In some soils, special phenomena happen with increases in their moisture content that sometimes inflict major damages on development projects. Dispersive soils are one type of such soils. The physico-chemical properties of the particles in dispersive soils cause them to disperse and separate from each other upon contact with water. If dispersive clays are not accurately identified, they will cause damages and failures. In the Simin Dasht region of Semnan Province, some hydraulic structures have incurred serious damages because they are located on dispersive soils.
The present research studied the soils around the canal transferring water from the Simin Dasht to Garmsar. This 37-kilometer long canal is situated in Semnan Province between the Simin Dasht and the Garmsar diversion Dams. Scouring and soil erosion under the concrete lining of the canal has led to the destruction of the structure. After visiting the site and taking soil samples, double hydrometer and pinhole tests were performed. The effects of adding various amounts of cement, lime and aluminum nitrate on amending dispersive clays were studied and compared in the Simin Dasht region of Semnan Province.
Experiments
The effects of the quantities of cement, lime and aluminum amendment materials on stabilization of dispersive soils in the Simin Dasht region of Semnan Province were investigated. Two types of dispersive clayey soils were amended. Table 1 presents the characteristics of the soils. The effects of various amounts of lime, cement, and aluminum nitrate on reduction in the degree of dispersion in the tested soils were studied. The cement, lime, and soil samples were dried at 40˚C for 24 hours. It must be mentioned that the amount of added lime, cement, and aluminum nitrate were zero, 3, 5, and 7 percent.
Table1. Characteristics of dispersive soils used in this reserch
Gs Optimum Moisture (%) Plasticity Index, PI (%) Plastic limit, PL (%) Liquid limit, LL (%) Natural water content (%) Soil
2.72 15 2.54 15.09 17.63 13.84 A
2.66 11 6.33 16.11 22.44 3.02 B


Results
Average changes in discharge passing through the dispersive soil samples A and B, and through samples of these soils amended with lime, cement, and aluminum nitrate in pinhole tests are presented in Figures 1(a-f), respectively. Figure 1a indicates that the behavior of the A soil samples amended with lime did not follow any specific trend, but we can cautiously say that soil A will become non-dispersive when lime is added at 4.5 percent at all moisture contents. Increases in the quantities of the cement added to the dispersive soils A and B to stabilize them independent of the moisture content of the soils were also investigated (Figure 1c, d). Behavior of the A soil samples stabilized with aluminum nitrate followed a specific trend (Figure 1 e, f) contrary to those amended with the other stabilizers.
Conclusions
Results of the tests show that dispersion in soil A was amended (without completely preventing the occurrence of the scouring phenomenon) by the addition of cement or lime at 5 percent or aluminum nitrate at 3 percent. Moreover, dispersion in soil B was amended by the addition of cement at 3 percent, lime at 5 percent, or aluminum nitrate at 3 percent. Aluminum nitrate was a better and more effective amendment material for the dispersive soils compared to lime. Therefore, aluminum ions replaced the other ions in the structure of dispersive clays more suitably compared to calcium ions. Comparison of the results obtained from the pinhole tests performed on soil samples amended with aluminum nitrate, lime, and cement suggests that it took a shorter time for the samples to be stabilized with aluminum nitrate compared to the other two amendment materials.



Figure1 Variation of discharge due to soil stabilization, Lime (a and b), Cement (d and c), Aluminum nitrate (e and f)
 
Ata Aghaei Araei1, Nahid Attarchian, Ahmadreza Ghodrati Ghazaani, Hossein Haddad, Amir Saeid Salamat, Hossein Hasani,
Volume 13, Issue 4 (Vol. 13, No. 4 2019)
Abstract

Introduction
One-dimensional site response analysis is widely performed to account for local site effects during an earthquake. Most of these approaches assume that dynamic soil properties are frequency independent. Laboratory test results as well as in-situ testing show that shear modulus and damping ratio are dependent on the frequency of loading. Although the amplification factor at ground surface with respect to frequency dependent dynamic properties of mixed alluvium materials under different near-fault motions with various velocity period is recognized, it is not well characterized and quantified.
Material and analysis methods
In this study, the tests results of samples which obtained from the drilling borehole (BH14) form Pardis city in Iran, are used. The soil is classified as clayey of high plasticity/clayey sand (CH/SC) and almost uniform and similar in the whole log profile.
Shear modulus and damping ratios versus shear strain curves (ASTM D3999) of CH/SC natural materials at effective confining pressures of 1, 2 and 5 kg/cm2 with frequency of 0.5, 2, 5, and 10 Hz were used in one dimension response analyses using EERA Code.
Generally the damping ratio versus shear strain of the studied materials under low loading frequency (i.e. 0.5 Hz) almost falls in the range identified in literature. However, at higher loading frequencies (5 and 10 Hz) the damping ratios completely fall above the known upper bound trend. It is observed that, in general, the G and D values increase as loading frequency increases. Moreover, at certain strain G/Gmax ratio decreases as loading frequency is increased.
Different dynamics behaviour curves were used in analyses, in isotropic consolidation conditions. In order to assess the amplification, acceleration spectra, acceleration spectra ratio, coefficient of B, at ground surface under eight well-known near-fault ground motions, 1728 one dimensional analyses were carried out with EERA code. The analyses have been performed for three base acceleration levels, namely, 0.1 g, 0.35 g and 1 g, using the simple time history scaling method. Field and laboratory test results of shear wave velocity were used in the analyses.
In this study, several well-known near-fault motion records are utilized for ground response analyses. Near-fault earthquakes records were selected from the strong motion database of the Pacific Earthquake Engineering Research Center (PEER) and Iran Strong Motion Network (ISMN) for specific reasons of location of the near faults sites.
In current building codes, the upper 30 m soil deposits overlying the higher impedance earth crust are regarded as the most relevant and significant in characterizing the seismic behavior of a site. Therefore, it is useful to accomplish investigations for obtaining their amplification and spectral acceleration for 30 m and even thicker (e.g. 60 m, for usual deep excavation in Iran), in order to have economical and safe designs and constructions.
Results and discussion
Figure 1 presents a comparison of normalized spectral acceleration (B factor) versus period for 30 m and 60 m thick profiles and Vs testing for frequencies dependent and independent analyses under input base acceleration of 0.35g for longitudinal component of used earthquakes. B factor of Iranian Standard 2800 and UBC97 also has been presented in the figure. The spectral acceleration at short period for frequency dependent analysis is higher than that of the frequency independent analysis. The  increases in frequency dependent analysis and higher thick profile (i.e. 60 m).
Conclusion
Results show that the effect of loading frequency has a considerable influence on the acceleration response at the ground surface. For both 30 m and 60 m soil columns, the increase of the loading frequency, decreases the amplification factor especially in the short period zone of the spectra. Based on the acceleration response spectra of near field strong motions derived for soils types of I and IV in this study, the period corresponding to  in the design spectrum of Iranian Standard 2800 should increase to 0.5 and 1.4, respectively. Therefore, selection of the appropriate G and D curves measured at frequency similar to those of the anticipated cyclic loading (e.g. seismic) has a paramount importance../files/site1/files/134/1.pdf

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb