Search published articles


Showing 3 results for Hafezi Moghadas

Fahimeh Salehi, N Hafezi Moghadas, M Ghafoori, Gr Lashkaripour,
Volume 8, Issue 3 (12-2014)
Abstract

Khorasan Razavi province is one of the areas with many chains of Qanat and Mashhad city in the center of this province has developed on areas with Qanat in the west direction. Loads caused by tall buildings and structures that built on old Qanats can make Qanats unstable and consequently Qanat collapse can lead to ground settlement. This paper deals with identifying the exact locations of Qanat chains by aerial photographs and evaluating the main factors that cause Qanat collapsing. Moreover the stability of Qanat was evaluated in numerical modeling by Plaxis software. The geotechnical data, Qanat depth, Qanat lining system and vertical load was used in modeling and after that, the extension of plastic zone around the Qanat underground tunnel was analyzed. The results of this research show that the rate of plastic zone extension and the influence of lining in Qanat stability decreases by increasing in the Qanat depth. As it is estimated while Qanat depth increases as much as one meter, it can tolerate more pressure as much as loads induced by a one-storey building.
M Kordavani, N Hafezi Moghadas, Ramazan Ramazani Omali,
Volume 8, Issue 4 (3-2015)
Abstract

The Minab (Esteghlal) dam site is located in east of Minab city in Hormozgan province. The Minab active fault cross the reservoir of dam and have an important role in leakage from the reservoir. The joint study of area in ten stations around the reservoir of dam display the four main joint sets. For assessment of leakage of reservoir, the permeability of rock masses outcrops in the reservoir is estimated by hydraulic conductivity HC experimental model. For this, the RQD, GSI and other characteristics of rock mass around the reservoir were measured in field studies. The results show that the permeability of embankments changes from 9.14×10-6 up to 2.02×10-5 m/s. Also the water lost for three different condition of minimum, mean and maximum level of water table is about 0.14, 0.20 and 0.29 m3/s. The results indicate that the discontinuities with trend of east-west and northeast-southwest and also shear fault zone of Minab have main effects in leakage of reservoir.
R. Yazdanfar, N. Hafezi Moghadas, H Sadeghi, Mr Ghayamghamian,
Volume 9, Issue 4 (3-2016)
Abstract

 The average of shear wave velocity of the upper 30 m has so far been one of the reliable parameters in seismic site classification in different building codes, despite the numerous weaknesses in the exact explanation of site dynamic characteristics. In this study, an empirical relationship is obtained between the average of the shear wave velocity of the upper 30 m and the average of the shear wave velocity of shallower depths, based on 79 shear wave velocity profiles, in Mashhad. This is followed by the recommendation of proper depths for the dynamic analysis of the site effect based on the information of shear wave velocity profiles and resonance period distribution in the investigated area. The depth of the S-wave velocity profile investigation, required for the analysis of deposit effects has been estimated more than 30 m. whith exception of the southern and western parts of Mashhad (adjacent hillsides). Such depth is estimated as about 80 m for central, eastern, and north-eastern areas, where the resonance period is more than 0.7 s. Therefore, investigation depth of 30 m is only adequate for site classification based on the building codes, and for theoretical analysis deeper studies is needed, in Mashhad

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb