Evaluation of the excavation-induced ground movements is an important design aspect of supporting system in urban areas. This evaluation process is more critical to the old buildings or sensitive structures which exist in the excavation-affected zone. Frame distortion and crack generation are predictor, of building damage resulted from excavation-induced ground movements, which pose challenges to projects involving deep excavations. Geological and geotechnical conditions of excavation area have significant effects on excavation-induced ground movements and the related damages. In some cases, excavation area may be located in the jointed or weathered rocks. Under such conditions, the geological properties of supported ground become more noticeable due to the discontinuities and anisotropic effects. This paper is aimed to study the performance of excavation walls supported by nails in jointed rocks medium. The performance of nailed wall is investigated based on evaluating the excavation-induced ground movements and damage levels of structures in the excavation-affected zone. For this purpose, a set of calibrated 2D finite element models are developed by taking into account the nail-rock-structure interactions, the anisotropic properties of jointed rock, and the staged construction process using ABAQUS software. The results highlight the effects of different parameters such as joint inclinations, anisotropy of rocks and nail inclinations on deformation parameters of excavation wall supported by nails, and induced damage in the structures adjacent to the excavation area. The results also show the relationship between excavation-induced deformation and the level of damage in the adjacent structure.

| Parameter | Unit | Layer No. 1 | Layer No. 1 |
| Internal friction angle (CU) | Deg. | 29 | 33 |
| Cohesion (CU) | Kg/cm2 | 0.15 | 0.45 |
| Density | Kg/cm3 | 18.5 | 20 |
| Poisson ratio of unloading/reloading | Kg/cm2 | 0.2 | 0.2 |
| Secant deformation modulus | Kg/cm2 | 550 | 900 |
| Power of stress level of stiffness | 0.5 | 0.5 | |
| Stiffness unloading | Kg/cm2 | 1650 | 2700 |
.jpg)


The urban development of Tabriz faces numerous geological and engineering challenges due to the presence of Neogene argillaceous-marly rocks. These rocks exhibit low mechanical strength and bearing capacity, as well as high deformability. This study aims to analyze these rocks and establish practical correlations among their petrographic, physical, and mechanical properties, alongside ultrasonic test results. These correlationscan help estimate uniaxial compressive strength (UCS), compression wave velocity (Vp), and elastic modulus (E). The findings indicate that argillaceous-marly samples, classified as very weak to weak rocks or hard soils with significant deformability, exhibit low compression and shear wave velocities. These samples are predominantly found in yellow, olive green, gray to dark gray, and brown colors throughout the city. The study reveals significant linear relationships between physical properties, mineralogical composition, UCS, and E with seismic wave velocity. Notably, there is a strong correlation exists between compression wave velocity and uniaxial compressive strength, shear strength parameters, cement content, and mineralogical composition in these rocks. These relationships suggest that mineralogy, porosity, density, and slake durability index are key factors influencing seismic wave velocity. Additionally, the variations in textural and microstructural diversity of argillaceous-marly-marly samples contribute to unpredictable mechanical behavior, which can pose potential hazards. Furthermore, a qualitative fissure index (IQ) was developed usingthe P-wave velocity of the samples to classify them into categories of high fissurability.
| Page 1 from 1 |
© 2025 CC BY-NC 4.0 | Journal of Engineering Geology
Designed & Developed by : Yektaweb
