Search published articles


Showing 4 results for Mirzaee

Amin Ahmadi, Manouchehr Chitsazan , Seyed Yahya Mirzaee , Arash Nadri ,
Volume 16, Issue 2 (Summer 2022 2022)
Abstract

In order to protect water wells, it is necessary to analyze the zones of influence, capture, recharge and discharge zones. Despite much research, this issue still needs further discussion. The purpose of this research is to analyze the capture and discharge zones of water wells in alluvial unconfined aquifers. For this purpose, a hypothetical aquifer was simulated using the Modflow and Modpath models. The accuracy of the numerical model outputs was confirmed by comparison with the analytical calculations, and then the effect of the independent parameters of the well and the aquifer was investigated. This research showed that, contrary to popular belief, changes in hydraulic conductivity, specific yield, bedrock dip, initial thickness, porosity, and heterogeneity do not cause changes in the surface extent of the well's capture zone in the unconfined aquifer.This research has shown that changes in surface recharge, discharge and well location cause many changes in the surface extent of the well capture zone in unconfined alluvial aquifers. Investigation of the effect of pumping time in a single well system showed that the size of the capture zone initially increases, but after a short period, of time, despite the continued expansion of the drawdown cone, its position stabilises. It was found that the change in all the above parameters causes a change in the size of the well's discharge zone. The stability of the above-mentioned areas is very important for the determination of zones for the protection of the quantity and quality of water wells! It has been found that the relative stability of the water level in the aquifer at an appropriate level is necessary, and this requires the management of the aquifer and the allocation of a limited percentage of the aquifer recharge to discharge through wells.
 

Dr Seyed Yahya Mirzaee, Phd Student Zahra Chaghazardi, Dr Manouchehr Chitsazan, Dr Farshad Alijani,
Volume 17, Issue 1 (Spring 2023 2023)
Abstract

The Evan plain is located in the Khuzestan province in the southwest of Andimshek city. Groundwater is one of the available water resources for irrigation, drinking, and industry in this region. Due to the importance of examining the ground water quality of the Evan plain, hydrochemical parameters and nitrate pollution have been evaluated. Nitrate is one of the most widespread pollutants of ground water in the world. However, few studies have been conducted on this pollutant in the Evan plain. Therefore, to assess the quality of ground water in this area with emphasis on nitrate pollution, sampling was carried out in September of the water year (1400-1401) from 22 wells in this plain. During the sampling, field parameters (temperature, pH, EC), concentrations of major elements (Ca2+, Mg2+, Na+, K+, Cl-, SO42-, HCO32-, CO32-), and nitrate were measured. The results of the factor analysis demonstrated three influencing factors, namely EC, Na+, K+, Mg2+, Ca2+, Cl-, SO42-  (as the first factor), pH and Hco32- (as the second factor), and NO3- (as the third factor), with a total of 89.72% having the most changes in the Evan plain aquifer. The dominant water type in the Evan plain is sulfate-calcite. Hierarchical clustering analysis shows the three clusters for the regionalization of nitrate data. In general, the changes in nitrate ion concentration in the groundwater of the Evan plain are affected by the size of the soil particles, the depth of the groundwater, and the utilization of chemical fertilizers in the area.
 

Dr Seyed Yahya Mirzaee, Phd Student Roghayeh Amiri, Dr Manouchehr Chitsazan,
Volume 17, Issue 4 (Winter 2023)
Abstract

This study investigates the effects of climate change on the Khorramabad Central Plain aquifer. The climatic variables of temperature and precipitation were studied and downscale using GCM and LARS-WG models for a 45-year base period (October 1971 to September 2015). Temperature and precipitation values were then projected for a 30-year period (October 2024 to September 2054) under the climate scenarios SSP1.2.6, SSP2.4.5 and SSP5.8.5. The rainfall runoff simulation was carried out in the Khorramabad basin using the IHACRES model. The groundwater flow in the central plain of Khorramabad was calibrated using MODFLOW code for a period of 120 months (October 2010 to September 2020). This model was validated for a period of 36 months (October 2020 to September 2023). According to the results, the values of precipitation in the future period compared to the base period will decrease by 42.6, 47 and 61.9 mm in the scenarios SSP1.2.6, SSP2.4.5 and SSP5.8.5 respectively. The annual mean of minimum and maximum temperatures increases in all three scenarios. After calibration of the IHACRES model, NSE=0.74, RMSE=1.46 and R2=0.64 were obtained. According to the results, the predicted discharge of the Khorramabad River in the future period will increase by 2.38 m3.sec in the SSP1.2.6 scenario and decrease by 0.42 and 0.94 m3.sec in the SSP2.4.5 and SSP5.8.5 scenarios, respectively, compared to the base period. The average 30-year aquifer balance under the SSP1.2.6, SSP2.4.5 and SSP5.8.5 scenarios was 27494.5, -12335.3 and -41823.3 m3, respectively. The groundwater level of the Khorramabad Central Plain aquifer will decrease in the future period.
 

Dr Sepideh Shakour, Dr Manouchehr Chitsazan, Dr Seyed Yahya Mirzaee,
Volume 18, Issue 2 (Summer 2024)
Abstract

One of the appropriate ways to prevent groundwater pollution is to identify vulnerable aquifer areas. The Dezful-Andimeshk Plain has two landfills that do not comply with the necessary standards for waste disposal and a river that recharges the aquifer, which can be potential pollutants for the aquifer. Therefore, evaluating the pollution potential of this aquifer is considered a necessity. To achieve this goal, for the first time in this area, the assessment of the aquifer pollution potential was carried out based on the intrinsic vulnerability (DRASTIC) and specific vulnerability (DLR), and finally, the potential contamination (PC) in the region was evaluated.. Based on the results, the value of the inherent vulnerability index ranges from 106 to 162 and has two vulnerability classes: moderate and high. The high vulnerability is related to the western margin of the plain and near the outlet of the plain, as well as in the middle of the plain with a northeast-southwest trend. The low vulnerability is associated with the northern and southern parts of the region. The specific vulnerability index ranges from 25 to 75, which, based on expert opinion, is classified into two classes: low and medium vulnerability. The highest intrinsic vulnerability is in the middle of the plain and around the Dez River. According to the results, the aquifer's PC ranges from 130 to 207 due to specific and intrinsic vulnerabilities. It is classified into three classes: medium, high, and very high, mainly affected by the river, land use, soil, and hydraulic conductivity.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb