Hassan Moomivand, Mir Ali Moomivand,
Volume 5, Issue 2 (4-2012)
Abstract
Discontinuities have properties such as orientation, number of set and frequency that can affect the rock strength. Rock specimens having one, two and three cross- sets of discontinuities, various frequencies and orientations of 0, 30, 45, 60 and 90 degrees were prepared. The numbers of rock pieces increased progressively with an increase of frequency and set of discontinuities. As specimens having three sets of discontinuities that one of their sets had four number of parallel discontinuities were consisted 20 rock pieces and they represented jointed rock mass. Joint factor, uniaxial compressive strength and friction angle along the discontinuity surface in direct shear were determined. The uniaxial compressive strength of specimens having one, two and three sets of discontinuities in horizontal and vertical direction was less than the uniaxial compressive strength of intact rock. The uniaxial compressive strength of specimens approached approximately to zero value particularly when the orientation of discontinuities was 60 degrees. This considerable decrease of strength was occurred also for specimens having two and three sets of discontinuities at orientation of 30 degrees. The analysis of results showed that the relationship between ratio of uniaxial compressive strength of jointed specimens to the uniaxial compressive strength of intact rock specimens (anisotropy factor) and joint factor of this research is considerably different with the suggested relationship by Ramamurthy. Properties of discontinuities have altogether essential role on the strength of rock mass.
, Hassan Moomivand, ,
Volume 10, Issue 1 (Vol. 10, No. 1 Spring 2016 2016)
Abstract
Non-destructive methods such as ultrasonic wave velocity are extensively used for estimating physical and mechanical properties of rock due to the simplicity, economical, fast and harmless nature. Rock constructions have been made worldwide from past to present. Determination of strength of rock constructions such as archeological evidence is not possible using conventional rock strength tests. Developing a cheap, simple, non-destructive, efficient and accurate method to estimate the strength of such constructions can be useful. Rock blocks and constructions have various shapes and sizes. Rock blocks having various shapes and sizes have been prepared from marble, travertine, granite, and limestone and ultrasonic wave velocity at various directions of the blocks dimensions and the uniaxial compressive strength of cylindrical core obtained from the blocks have been measured. The results show that shapes and sizes have no effect on the ultrasonic wave velocity. At the end relationships between uniaxial compressive strength and ultrasonic wave velocity have been determined. The uniaxial compressive strength of blocks and rock constructions can be estimated by the obtained relationships using non-destructive, simple and indeed low cost method of ultrasonic wave velocity.