Search published articles


Showing 2 results for Namavar

Dr Emad Namavar,
Volume 18, Issue 5 (English article specials 2024)
Abstract

A considerable part of Golestan Province is covered by loess soils, most of which are of the silty loess type, which is one of the most problematic soils. The proximity of the Caspian Sea leads to salinity of the groundwater in some areas of the province. Due to high evaporation, salts reach the surface and cause salinization of the silty loess soils at the surface. The presence of soluble salts can lead to changes in the engineering properties of silty loess soils at the site of construction projects. It is therefore necessary to investigate the influence of salts on the geotechnical properties of silty loess soils. The aim of this study was to investigate the effect of sodium chloride or halite (NaCl) and calcium sulphate or gypsum (CaSO4.2H2O) salts, as the two most abundant natural salts, on the engineering properties of silty loess soils. For this purpose, silty loess soil samples were collected from Maraveh Tappeh city, Golestan province, Iran. Geotechnical tests including uniaxial compressive strength, shear strength and standard compaction tests were then carried out on soil samples in the natural state and with 3, 5, 7, and 9% NaCl and CaSO4.2H2O. Based on these tests, the variation in optimum water content (ωopt), maximum dry density (ρdmax), uniaxial compressive strength (UCS), cohesion (C), internal friction angle (φ) were evaluated. The results showed that these parameters increased with increasing both natural salts concentration. Finally, the reason for the changes in the engineering properties of the soil samples due to the presence of these two natural salts was discussed.

Dr Emad Namavar,
Volume 19, Issue 6 (Accepted Articles 2025)
Abstract

Accurate geotechnical classification is essential for excavation design in urban environments, where soil behavior is highly influenced by excavation-induced stresses. This study refines the geotechnical characterization of fine-grained alluvial deposits belonging to the youngest sedimentary unit (Unit D) in Rieben’s classification. A comprehensive investigation was conducted through borehole drilling, Standard Penetration Tests (SPT), pressuremeter testing, and laboratory experiments including triaxial, uniaxial, and direct shear tests. Excavation stability was assessed using the Morgenstern–Price method under both short-term and long-term conditions. Based on the geotechnical parameters and slope stability simulations, Unit D was subdivided into three distinct zones (D1, D2, and D3) with different excavation behaviors. Zone D1, characterized by lower sand content, allows deeper vertical cuts, whereas the presence of sandy lenses in Zone D3 restricts excavation depth and requires gentler slopes. The findings provide an updated geotechnical classification framework for fine-grained alluvia, offering practical guidelines for safe excavation design and contributing to the broader understanding of alluvial systems in urban geotechnical engineering.
The developed framework offers substantial practical advantages including cost reduction through minimized laboratory testing, rapid prediction capabilities for quality control, and enhanced risk assessment through uncertainty quantification. The integration of petrographic analysis with machine learning provides engineers and practitioners with a scientifically robust and economically viable approach to rock strength assessment, supporting more reliable engineering design and reducing the risk of costly project failures.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb