Search published articles


General users only can access the published articles
Showing 6 results for Subject:

, , ,
Volume 5, Issue 2 (4-2012)
Abstract

The development of large cities requires the use the underground networks for the construction of transportation infrastructures and facilities. Construction of tunnels in soft grounds induces generally soil movement, which could seriously affect the stability and integrity of existing structures. In order to reduce such movements, in particular in urban areas, contractors use more and more the tunnel boring machines (TBM) for the construction of tunnels. Hence in urban environment, Prediction of the ground movements caused by the tunnel excavation is a major engineering challenge. In this paper is used a three-dimensional numerical model and ABAQUS cod for the prediction of soil movements induced during tunnel construction in part of the line 3 of Tehran subway using EPB excavation machine. This investigation include most shield tunneling components such as face pressure, the grouting pressure, excavation machine and frictional contact with soil and shield. Observations of the results demonstrate that the maximum surface settlement in this section is 2.5 cm that is 0.5 cm more than the its allowable value. Simultaneously with surface settlements occur horizontal movements within soil mass, which have different forms in two horizontal directions, and with the expansion of depth they increasing.
H Atapour, R Ahmadi,
Volume 9, Issue 3 (12-2015)
Abstract

In present research, landslide hazard zonation of Latian dam watershed area has been carried out using Analytic Hierarchy Process (AHP), Valuing area accumulation, Factor overlay and Information value methods. At first, different maps comprising slope, aspect, altitude, faults, drainage network, access roads, lithology, land use and friction angle maps were prepared digitally using GIS. Afterward affecting factors were evaluated using old landslides. The results of evaluation show that seven parameters are important effective factors on sliding in this area. These parameters were leaded to landslide zonation maps. These maps show that potentially high risk zones point of view landslides are located near the central and western boundaries of the reservoir. Performance of four used classification methods were evaluated and compared. The evaluation results show that Valuing area accumulation and Factor overlay are precise methods for evaluating landslide potential in the study area respectively
S. Nooraee-Nejad, Mohammad Sedghi Asl, M. Parvizi, A Shokrolahi,
Volume 9, Issue 4 (3-2016)
Abstract

Stability and safety of the dam is one of the most important challenges during construction and operation. The aim of this study is to make accurate water table and piezometric heads through embankment and its foundation of the Shahghasem dam which is located near Yasouj city. Applying geostatistical, Simple Kriging, Ordinary Kriging and Weighted Moving Average, interpolation was done using Gaussian, exponential and spherical models. For comprising the results, we use the statistical index including MAE, MBE, RMSE and GSD. Results indicate that Simple Kriging with Gaussian model is the best one, while Ordinary Kriging with Gaussian model and Ordinary Kriging with spherical model are in the next order. The Weighted Moving Average method with different exponents shows a significant error comparing to other methods. As a result, the depicted maps display a cavity through foundation near right abutment of the dam. Finally, existence of probable cavity in foundation may cause piping and internal erosion
Seyed Hamed Moosavi, M Sharifzadeh ,
Volume 10, Issue 4 (Vol. 10, No. 4 Winter 2017 2017)
Abstract

Combination of Adoptive Network based Fuzzy Inference System (ANFIS) and subtractive clustering (SC) has been used for estimation of deformation modulus (Em) and rock mass strength (UCSm) considering depth of measurement. To do this, learning of the ANFIS based subtractive clustering (ANFISBSC) was performed firstly on 125 measurements of 9 variables such as rock mass strength (UCSm), deformation modulus (Em), depth, spacing, persistence, aperture, intact rock strength (UCSi), geomechanical rating (RMR) and elastic modulus (Ei). Then, at second phase, testing the trained ANFISBSC structure has been perfomed on 40 data measurements. Therefore, predictive rock mass models have been developed for 2-6 variables where model complexity influences the estimation accuracy. Results of multivariate simulation of rock mass for estimating UCSm and Em have shown that accuracy of the ANFISBSC method increases coincident with development of model from 2 variables to 6 variables. According to the results, 3-variable model of ANFISBSC method has general estimation of both UCSm and Em corresponding with 20% to 30% error while the results of multivariate analysis are successfully improved by 6-variable model with error of less than 3%. Also, dip of the fitted line on data point of measured and estimated UCSm and Em for 6-variable model approaches about 1 respect to 0.94 for 3- variable model. Therefore, it can be concluded that 6-variable model of ANFISBSC gives reasonable prediction of UCSm and Em.


Ehsan Dadashi, Ali Noorzad, Koroush Shahriar, Kamran Goshtasbi,
Volume 12, Issue 4 (Vol. 12, No. 4 2018)
Abstract

Introduction
Pressure tunnels in hydroelectric plants are used to convey water to powerhouses. These tunnels are the sources of seepage flow to the rock formation, thus, during the water filling, they will have a low resistance to seepage and, by increasing the internal water pressure of the tunnel, the inflow force will be transferred to the rock mass. In these conditions, the cracks, pores and all other elements of the rock mass are affected by the seepage forces in all directions. This hydro-mechanical interaction affects changing the stresses and displacements of the rock mass around the tunnel and causes modifications in the permeability of rock elements during the water filling. Therefore, changes in stress distribution lead to alterations in the permeability coefficient and redistribution of the seepage field. In these conditions, since the analytical solution of the problem is not possible, the numerical analysis based on the finite element method has been used in this study.
Material and methods
In this approach, the rock mass is considered as an equivalent continuum in which the effects of discontinuities are taken into account in its material behavior. High-pressure tunnels under internal water pressure requires reinforced concrete lining to prevent hydro-fracturing. The ABAQUS software is capable of analyzing such as seepage from the tunnel, modeling of the steel bars in concrete, and taking into account hydro-mechanical interaction. Thus, the software is used for numerical analysis.
The pressure tunnel of the Gotvand dam and hydroelectric power plant (HPP) scheme is taken as a case study for the numerical simulation. Pressure tunnel of the Gotvand dam located in the southwest of Iran is taken as a case study for the numerical simulation. Among behavioral models in the software, Mohr-Coulomb failure criterion is considered to describe the rock mass, but the principle of effective stress determines the rock mass behavior. Since the concrete lining of the pressure tunnel will undergo two mechanisms of the cracking due to tension and the crushing due to compression, concrete damaged plasticity model is used to predict the response of the concrete elements. The evolution of the yield surface of the concrete lining is also controlled with tensile and compressive equivalent plastic strains, correspondingly.
In this study, the hydro-mechanical interaction is implemented based on the analysis of the pore fluid/deformation analysis, and the direct-coupled method is used to solve the governing equations of the problem. To verify the proposed model, the elastic behavior of the media is simulated to compare the numerical and the analytical solutions and good agreement is obtained. The numerical analyses are carried out the hydro-mechanical interaction with constant permeability coefficient. When cracks develop in the concrete lining at high water pressure, the properties of the concrete lining change and as a result, the stress dependent permeability of the lining and surrounding rock mass in pressure tunnels should be considered. The coefficient of permeability controls the rate of seepage flow in porous and fractured media. Although permeability represents an original property of the porous media, it can be modified when subjected to the stress variations. Instead of changing aperture, the change in the void space or volume is the typical consequence that results to change the permeability coefficient. In order to bring the model closer to the real conditions and in the validation of the new model, the influence of the permeability coefficient variations of the concrete and rock mass on the deformations and stresses of the model has been added to nonlinear analysis by USDFLD code. Increasing the water head in the tunnel during water filling is also considered with the combination of DLOAD and DISP codes in the model.
Results and discussion
Since the lining and rock mass have nonlinear properties and complex behavior, for verification of the model in ABAQUS software, the model is simulated with homogeneous, isotropic and elastic behavior. The results of seepage flow on the interface of the concrete lining and rock mass obtained by analytical and numerical solutions indicate that there is a ±5 % difference between them. Then, the results of the elastic behavior of the model show a good agreement with the results of analytical solutions. Therefore, this numerical model has been employed for the nonlinear analyses.
Finally, the optimal thickness of the concrete lining with the appropriate arrangement of the reinforcement in the reinforced concrete linings is utilized to minimize water losses from the tunnel based on the new model. Thus, the results of the analysis with the aim of reducing the water losses from the tunnel indicate that the suitable arrangement of the steel bars in the concrete lining leads to the distribution of micro cracks in the lining, and the reinforcement stress stays at a lower value with high internal water pressure. Based on the new numerical model, it is suggested that the lining should be designed with the thickness of 40 cm and the reinforcement with the diameter of 16 mm and the spacing of 20 cm.
 Conclusion
The results of the numerical model indicate that to control the seepage outflow from concrete-lined pressure tunnels, the thickness of the lining and the suitable arrangement of the steel bars in the concrete lining play a significant role in preventing excessive seepage from the tunnel./files/site1/files/124/3dadashi%DA%86%DA%A9%DB%8C%D8%AF%D9%87.pdf
, , , ,
Volume 15, Issue 3 (12-2021)
Abstract

In this study, due to the landslide in schist rocks, in the wall of Mouteh gold mines, including of the eastern wall of ChahKhatoon mine, it is important to identify the effective factors. Therefore, due to the diversity of schists in Chah Khatoon and Sanjadeh gold mines (two active mines in Mouteh Complex), to survey the mineralogy of schist rocks in Moteh gold mine has been done by identifying important factors in changes in rock strength. Cosequently, 10 schist samples from walls of these mines were considered for mineralogical, XRD studies. In the next step, these schists were subjected to uniaxial compressive strength (UCS) and Brazilian tests to estimate the mechanical properties and quality of rock mass in different zones of mineral walls. The results showed that the UCS and Brazilian index in these schists are directly and inversely related to the SiO2 and Al2O3 contents of the rocks, respectively, as well as the secondary structures.Some factors such as the presence of secondary structures, continuous surface area, particle size, and mineralogical composition play an important role in the failure modes of these rocks. UCS and Brazilian strength of schists vary from 10 MPa to 72 MPa and 1.9 to 10.2 MPa, respectively. The lowest UCS occurs in strongly weathered rocks with low silica content. However, the type of clay minerals is effective in the stability of the mineral wall. Considering the presence of montmorillonite clay mineral in the eastern wall of Chahkhatoun mine, the rock resistance is moderate despite the high percentage of silica. UCS values of wet and dry rock samples containing muscovite and montmorillonite clay minerals were more different from those of other rocks. In this regard, the rocks with Illite clay minerals are more resistant than Smectite and montmorillonite minerals. In general, the resistance of schists depends on various factors such as mineralogy, which is of great importance because of its involvement in the formation of secondary structures.

./files/site1/files/%D8%AC%D8%B9%D9%81%D8%B1%DB%8C_%D9%82%D8%B1%DB%8C%D9%87.pdf

 

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb