General users only can access the published articles
Showing 6 results for Subject:
Behrouz Ahmadpour, Masoud Amel Sakhi,
Volume 11, Issue 3 (Vol. 11 No. 3 Autumn 2017 2018)
Abstract
Earth-fill dams stability in steady state seep
age condition is very important, especially during earthquakes. Numerical software analyses require accurate and realistic modeling of construction stages. Since earth-fill dams are constructed in different layers, so these conditions should be considered in software modeling to achieve a reasonable design. In this study, an earth-fill dam is modeled in PLAXIS software and the effects of the number and shape of layers are studied in dry and steady-state conditions. Obtained results in static and pseudo-static analyses show that modeling of earth-fill dams with different layers has significant effects on shear stresses and horizontal displacements. For example, horizontal displacements and shear stresses, increase at least 50% and 17% respectively, in comparison with single layer models. According to the obtained results, it can be mentioned that modeling of an earth-fill dam in the layered model and rather in inclined layers are more reasonable
Mr Behrouz Ahmadpour, Dr Masoud Amel Sakhi, Prof Mohsen Kamalian,
Volume 12, Issue 5 (English article specials 2018)
Abstract
Steel sheet pile walls are being widely used as earth retaining systems. Sometimes loose or soft soil layers are located in various depths in an excavation. This issue causes different effects on ground surface displacements, forces and moments acting on sheet piles and struts during excavation procedure, compared with a status that soil is totally uniform. These differences are not exactly considered in conventional design methods of sheet pile walls. In this paper, a deep excavation using finite element method is analyzed. Excavation’s depth is divided into three different layers. One of three layers is a loose soil layer and its position is modeled in three different situations, top, middle and bottom of the model. Obtained results are compared with results of excavation without the loose layer. The pseudo-static analysis is performed by applying 0.3g horizontal acceleration. The results indicate that when a loose layer is located beneath stiffer layers, bending moments acting on sheet pile wall and shear forces increase about (50~100)% and (15~50)%, respectively. Also, the middle loose layer changes the location of maximum lateral deformation of steel sheet pile wall.
, , Morteza Jiriaei Sharahi,
Volume 15, Issue 4 (12-2021)
Abstract
Soil stabilization and reinforcement has long played an important role in civil engineering, especially in geotechnics, and over time and the need for a more robust and stable ground to withstand gravity and higher shear forces, has become particularly important. Also, in recent years, with the entry of the environment into the construction industry, with the aim of reducing the adverse effects of industrial waste and construction waste on people's living environment and preserving the environment for the future, in many cases reduces the economic costs of projects. In this research, granular soil is reinforced in two loose and semi-dense states using a waste material called ethylene-vinyl acetate (EVA). The experiments were performed without adding moisture, by weight percentage method and using CBR device. The results show that soil resistance increases significantly with the use of these additives and its effect on soil increases with decreasing soil specific gravity. Also, the optimal amount of additives in loose and semi-dense state is 2% additive and 1% additive, respectively.
./files/site1/files/%DA%86%DA%A9%DB%8C%D8%AF%D9%87_%D9%85%D8%A8%D8%B3%D9%88%D8%B7_%D8%A7%D9%86%DA%AF%D9%84%DB%8C%D8%B3%DB%8C_%D8%B3%D9%87_%D8%B5%D9%81%D8%AD%D9%87_%D8%A7%DB%8C.pdf
Dr Masoud Amelsakhi, Eng Arash Ebrahimi,
Volume 16, Issue 3 (Autumn 2022)
Abstract
This research is a laboratory study to improve the geotechnical properties of fine-grained soils. For this purpose, agricultural waste ash such as sugarcane bagasse, rice husk and almond husk have been used. In this regard, the effect of using ash of the mentioned fibers with at 4, 8 and 12 weight percentages on fine grain clay soils has been investigated. The compaction test results indicate that these additives generally increase the optimum soil moisture and the maximum optimum moisture was observed for the samples made with 12% ash. Also, based on the results of the unconfined compressive strength test, the studied additives have increased the uniaxial strength of the soil. The samples made with 12% ash were the most effective, so that the addition of 12% bagasse ash increased the soil resistance by 117%, and the addition of 12% rice husk ash and almond husk ash increased the soil resistance by 89, 80% respectively.
Dr Masoud Amelsakhi, Eng Elham Tehrani,
Volume 17, Issue 4 (Winter 2023)
Abstract
This research is a laboratory study to improve the geotechnical properties of sandy soils. Concrete waste with a grain size of 1.2 to 1 inch was used for this purpose. The effect of using concrete waste at 0, 10, 20 and 30 weight percent on dry sandy soil in two loose and dense states was investigated. Based on the results of the direct cutting test, the addition of concrete waste has increased the shear strength and the internal friction angle of the soil; The loose samples made with ٪30 of concrete waste had the greatest effect, so adding ٪30 of concrete waste to loose sand increased the internal friction angle of the soil by ٪32 and the shear strength by ٪42 Similarly, adding ٪10 of concrete waste to dense sand increased the internal angle of friction of the soil by ٪4 and the shear strength by ٪6.
Dr Masoud Amelsakhi,
Volume 18, Issue 3 (Autumn 2024)
Abstract
Tunnels behave differently under seismic conditions due to their geometric shape, geotechnical parameters and installation depth. Although tunnels are less damaged compared to surface structures, they are still damaged during earthquakes. Various experiences have proved this matter, so researchers are concerned to study the seismic behavior of tunnels. In this research, circular tunnels are discussed under static and pseudo-static loading. In addition to different pseudo static earthquake factors, internal soil friction angle, soil behavior models, sliding and non-sliding of tunnel wall are also studied. Three different soft, medium and stiff soil conditions are studied. Some results show that in all three soil conditions and two soil behavior models, Mohr-Coulomb and hardening soil, the horizontal displacements increase due to the increase of the pseudo static earthquake factor. It should be noted that softening of the soil increases the horizontal displacements.