Search published articles


General users only can access the published articles
Showing 5 results for Subject:

Fahimeh Salehi Moteahd, Naser Hafezi Moghaddas, Golamreza Lashkaripour3, Maryam Dehghani4,
Volume 13, Issue 3 (Vol. 13, No. 3 2019)
Abstract

Introduction
Mashhad city, the second largest metropolis of Iran, is located in an arid and semi-arid region. Overexploitation of groundwater in Mashhad plain has caused up to 22.5-meter drop in the groundwater level from 1984 to 2013. The groundwater depletion in the unconsolidated aquifer has resulted in subsidence and cracks on the land surface. To determine the land subsidence rate map and the reasons for hot spot subsidence, the latest Envisat images of the ESA Space Agency's Archive for Mashhad plain were used. leveling and GPS data were combined with the radar interferometry results and the annual subsidence rate maps with high precision were obtained. Finally, the geology and soil texture maps of study area are compared to the land subsidence map.
Methods and results
To assess the land subsidence in Mashhad plain three methods of leveling, GPS and Insar are used. Leveling data are available in three profile of of Mashhad-Quchan (BCBD), Mashhad-Kalat (BDBE) and Mashhad-Sarakhs (BEBN) in two time interval of 1994-2003. The highest rates of subsidence in the BCBD, BDBE and BEBN lines are 7, 3.5 and 8.1 cm/year, respectively. Six permanent GPS stations have been installed in Mashhad plain, among them, NFRD, GOLM and TOUS have recorded the land subsidence, with the highest annual rate of 21.2 cm/year at TOUS Station. The third method applied to assess the history of land subsidence was InSAR radar interferometry which provided the extent and pattern of subsidence in all of the study area. For this, 23 images of the Envisat ASAR are processed during the 05/24/2010 to 06/30/2003 time period. The highest subsidence rate estimated by this method was 32 cm/year in the northwest of Mashhad. In general, two subsidence bowls, in the northwest and south east of Mashhad city are identified. Fig. 1 shows the annual subsidence rate map in Mashhad plain. Using the root-mean-square error (RMSE), the accuracy of the InSAR method was verified with GPS and leveling data.
Discussion
The rate and distribution of land subsidence in Mashhad plain are affected by geological factors such as soil texture, deposit thickness, geological structures and groundwater drawdown. The geological and geophysical studies and exploratory drilling results in the Mashhad Plain indicate that the bedrock morphology is very rough. The bedrock outcrops in some places while in some other places covered by more than 300 meters alluvial deposits. Generally, by distance from the mountain, alluvium thickness and as a result the likelihood of subsidence would be increased. Mashhad plain is surrounded by the active and quaternary faults in the north and south edges. In the north of Mashhad plain Marly bedrock is uplifted by Tous fault and outcropped in the north of fault. In the south of Mashhad two normal faults have resulted to the increase of alluvium thickness in south and central of Mashhad plain. The change of river pathway also let to deposition of a sequence of the fine-grained and coarse-grained soils in central of plain between Toos and southern branch of South Mashhad fault (F2).
used to draw the cross section
In order to evaluate the subsurface conditions and its effect on the land subsidence, the soil texture are studied using the deep water wells and piezometers log (Figure 2). Fig. 3 shows the longitudinal section (northwest to southeast) of the area. As it can be observed, the soil texture includes of alternation of fine and coarse grains layers (Figs. 4). In this condition, sandy soils help to shortening the drain path of clayey layers and leads to acceleration of the consolidation. The average rate of annual subsidence in the area is 14 cm for one meter of drop in the groundwater level.
Nowadays, in the urban area, due to the urban sewage waters, there is a rising of groundwater level.  Therefore, no land subsidence has occurred in the central parts of the city. It is expected by completion of urban sewage network about 62 million cubic meters of sewage water will be eliminated from the aquifer recharge, which will cause a notable drop in the groundwater level and prominent land subsidence in specific area of the city. Considering the geological conditions and the operation of the existing faults, it is expected that in the case of groundwater drop, no significant subsidence will occur in south of the F2 fault, due to the decrease in the alluvium thickness and to the coarse texture of the soil. But in the northern and northeastern parts of the city, which are located between F2 and the Tous faults, high rate of land subsidence is expected.
Figure 4: The cross section of soil texture and the annual average rate of land subsidence and groundwater level drop
Conclusions
Using the radar interferometry processing, the highest annual rate of subsidence in Mashhad plain is about 32 cm/year. Land subsidence in Mashhad plain has an increasing trend and the geological conditions have a critical role in the subsidence rate and its pattern. Generally, soil texture near the mountain area in South is coarse and grain size decreases toward the center of the plain. But because the outcrop of Marly formation in the north slopes, soil texture is mainly fine grains. In the center of Mashhad plain soil texture constituted of fine and coarse grains which are converted together as inter fingering facieses, which have a critical role in decreasing of the consolidation time and increasing the land subsidence rate. It is predicted by complimenting of the urban wastewater network, the groundwater level will be dropped in the city area and the northwest and southeast subsidence ellipsoids which already can be seen will be connected together. Therefore, the area between F2 and Toos faults, will be shown the highest rate of subsidence, due to high thickness and fine-grained soil texture../files/site1/files/133/5Extended_Abstracts.pdf
Hossein Ebrahimi, Farzad Akbari, Soroor Mazrae Asl, Babak Biglari,
Volume 17, Issue 4 (Winter 2023)
Abstract

The Vorskharan karst spring with a catchment area of 50 square kilometers and an average discharge of about 1.35 m2/s is one of the most important springs in the city of Firouzkouh. In order to asses the hydrogeological and hydrogeochemical charachteristics of the spring, the physical and chemical properties of the spring water were measured and analyzed for several months. The results showed that the recession curve of the spring has a slope and the value of its coefficient is about 0.003. The low coefficienof the discharge variation t, electrical conductivity and major ions, as well as the single slope of the spring’s recession curve , are mainly due to the elongated shape of the aquifer and the long-term presence of snow in the catchment basin of the spring. Considering the relatively high water level of the spring and the existence of a sinkhole and a polje in the spring’s catchment area, as well as the coefficient of small changes in the physical and chemical parameters of the spring, it can be said that the dominant flow system in the aquifer which recharges Vorskharan spring,is  conduit-diffusive. According to the field studies and the evaluation of the percentage of soil cover, the development of dissolved spaces and other morphological effects of karst, the percentage of annual recharge in the catchment area was estimated  at 56%. With the amount of precipitation, the percentage of annual recharge, the annual recharge volume of the preliminary water catchment basin equal to 19.2 MCM and the annual discharge volume of the spring through the annual hydrograph of the spring was calculated to be equal to 20.1 MCM. It was also observed that the type of water is Ca-HCO3, and the lithology of the aquifer is calcareous and dolomite.

Eng. Zahra Soleimani, Dr. Ebrahim Rahimi, Dr. Houshang Khairy,
Volume 18, Issue 1 (Spring 2024)
Abstract

This article deals with the strength evaluation of concrete obtained by adding different percentages of three types of nanominerals, including nanocalcite, nanobarite and nanofluorite. To measure the velocity of ultrasonic waves and compressive strength of concrete, 15×15×15 cm cube samples were prepared with 7-, 28- and 90-days curing. 10 types of mix  designs with 0.39 water-cement ratio, including the control sample (without additives) and the samples with 0.5, 0.75 and 1% nanominerals were subjected to the mentioned tests. The results showed that the addition of nanocalcite, nanofluorite, and nanobarite with values of 0.75%, 1%, and 0.75%, respectively, have the highest compressive strength compared to the control sample. Although these do not have pozzolanic properties, they play a positive role in increasing the concrete strength by filling concrete voids and due to their high specific gravity, increasing concrete density.
 

Miss Sooror Mazraeasl, Mr Farzad Akbari, Ms Elahe Iraniasl, Miss Leila Hosseini Shafei,
Volume 18, Issue 1 (Spring 2024)
Abstract

Groundwater is one of the main sources of water supply for agriculture, drinking and industry in Iran, especially in areas with arid and semi-arid climates. Therefore, due to the high importance of groundwater resources, it is necessary to know the hydrodynamic parameters in order to determine the natural flow of water and manage the optimal utilization of groundwater resources. Considering the role of the Daloon-Meydavood aquifer in providing part of the water needed in the study area, especially for agricultural purposes, the hydrodynamic parameters of this aquifer were estimated using the methods of grain size analysis, geophysics and pumping test. The parameters were calculated by all three methods and validated using the flow rate of the exploitation wells. In all three methods, the hydrodynamic parameters (Hydraulic conductivity, Specific yeild, transmissivity coefficient) are the highest in the north and northeast and the lowest in the south and northwest. The results showed that 2 methods including  grain size analysisand pumping test had the most similarity with the discharge map of the exploitationwells.
 

Eng. Mohammad Ijani, Dr. Ebrahim Rahimi, Dr. Vahab Sarfarazi, Dr. Ali Faghih,
Volume 18, Issue 4 (Winter 2024)
Abstract

Numerical modeling is an essential tool in engineering analysis, particularly within the fields of geoscience and geotechnics. The PFC2D software stands out in this field, using the Distinct Element Method (DEM) to simulate processes related to engineering geology and geotechnical assessment. This study focuses on the analysis and comparison of two common contact models: the Flat Joint Model (FJM) and the Linear Parallel Bond Model (LPBM). The Unconfined Compressive Strength (UCS) test is chosen as a the benchmark for calibrating and validating the PFC models. Sandstone samples for this study are taken from the Aghajari Formation located on the southern limb of the Madar Anticline. The results show that both contact models have a high ability to simulate the UCS in the calibration process. As this test is primarily used to calibrate the failure point (σc) and Young's modulus, the output values for both models are almost identical. However, the post-failure behavior in the stress-strain curves differs between the models, with the FJM demonstrating a more brittle response compared to the LPBM. The ability of the FJM model to simulate rough surfaces and material discontinuities allows for the representation of tensile cracking.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb