Search published articles


Showing 154 results for gh

Saeed Mahdavi, Mehrnosh Haghighat, Maryam Mokhtari,
Volume 14, Issue 1 (5-2020)
Abstract

Introduction
Rock mass deformation modulus is one of  the major parameters has to be considered in the design phase of arch dams. Due to filling and discharging of reservoir and corresponding loading and unloading on the dam abutments, irreversible deformation takes place within the rock mass and consequently, increases the potential of creating a separation between dam body and abutments. Therefore, the rock mass modulus must be more than an alowable value in order to prevent arch dam failure. Regarding small core samples and lack of joints and other similar discontinuities in samples, the determined modulus through performing laboratory tests is higher than those obtained through in-situ tests. The available technique to estimate the rock mass deformation modulus is divided into two classes as direct and indirect methods. In direct methods, the rock mass deformation modulus is measured via performing in-situ tests such as plate loading test while it is estimated through empirical equations using rock mass classification and laboratory test results in indirect methods. These equations are developed based on regression analysis between the rock mass modulus calculated via in-situ tests, the rock mass classification and laboratory test results. Although application of these equations is simple and cost-effective, the results are doubtful and cannot be used in the design phase of arch dam due to the heterogeneous nature of rock mass and rock type variability. The numbers of micro-cracks which are developed after gallery excavation using drilling and blasting technique are more close to the loading plate. Thus, calculated modulus in these points is lower than reality. The displacement in the points far from loading plate was near to zero while the transmitted load which is calculated applying ASTM D4394 standard is more than reality in small galleries. Consequently, the calculated modulus was extremely larger than real values and sometimes even more than intact value. The empirical equations are site dependent and they are just applicable in sites with similar geotechnical condition. It is obvious that in-situ tests, such as plate loading, are the appropriate method in order to determine the modulus of deformation, however, due to some simplification in the data processing such as semi-infinite boundary condition, the application of numerical simulation as a data processing tool is more appropriate. In this research, the Beheshtabad dam was introduced and the geology characteristics of dam site were investigated. Applying direct and indirect methods, the rock mass modulus of dam abutments is calculated.
Material and Methods
The dam site is placed approximately at a distance of 2.7 km from the intersection of Koohrange and Beheshtabad river. In accordance with geological studies, the rocks in the site could be categorized in four units combined of Dolomite, Dolomitic Limestone, Limestone, Marl and Marly Limestone. Applying empirical equation the rock mass modulus of dam abutments is evaluated based on the laboratory test results and rock mass engineering classification systems. In addition, ASTM D4394 is applied to investigate the results of ten plate loading tests which are executed in the right and left abutments. To interpret the plate loading test results in the right abutment, a three-dimensional Fast Lagrange Analysis of Continuum (FLAC3D) model is developed.
Result and Discussion
To process the numerical simulation results, back analysis as a data processing tool is used. In this approach, the input parameters of numerical model will be changed in the way that the measured quantities by extensometers at the monitoring points are almost equal with the computed ones via numerical model at the corresponding points. Based on the sensitivity analysis carried out on the Mohr-Coulomb failure criterion parameters, the friction coefficient and cohesion variation do not affect the displacements calculated via numerical simulation as the more portion of gallery displacements are elastic. The error function is minimum when the rock mass modulus is 12 GPa and the horizontal to vertical stress ratio (K0) is equal to 0.5. The evaluated rock mass modulus based on the numerical simulation is two times lower than corresponding one evaluated applying empirical equation as a result of empirical equation uncertainty. Consideration of stress decrement under loading plate shows lower level of stress decrement under loading plate in ASTM D4394 compared to numerical simulation. This is why, the rock mass modulus, calculated based on ASTM D4394, increases dramatically by getting distance from the loading plate. 
Conclusion
The empirical methods estimating the modulus of deformation based on rock mass classification systems tend to evaluate large value of modulus especially for the weak massive rocks.
As a result of galleries dimensions and semi-infinite boundary condition assumed in ASTM D4394, the calculated rock mass modulus increases dramatically by getting distance from loading plate. Therefore, the numerical simulation was applied to process the plate loading test results. A new normalized error function was developed based on measured displacements and the rock mass modulus in the right abutment was determined 12 GPa which is very lower than the calculated value using ASTM D 4394. Also, as a result of numerical simulation, the rock mass is uniform. The stress increment perpendicular to the loading plate was calculated applying numerical simulation which is 0-90 percent lower than those suggested by ASTM D 4394. 
 
Mohammad Hossein Ghobadi, Mehrdad Amiri, Farhad Aliani,
Volume 14, Issue 1 (5-2020)
Abstract

Because of the diversity in petrography, peridotites have variable physical and mechanical properties. For this reason, knowledge of resistance properties and their deformation will help with the prediction of engineering behavior of these rocks. Due to the large spread of igneous rocks, especially peridotite, in Zagros, northeastern and central Iran, special attention has been paid to their petrographic, physical and mechanical characteristics. The construction of the structure within or on the peridotites and the choice for the purpose of the stone borrow depends on the recognition of its engineering geology characteristics. In this paper, in addition to the field and laboratory study, the geological characteristics of peridotite engineering has been investigated.                                    
Material and methods                    
In order to study the geological characteristics of the peridotites of Harsin region, 15 suitable blocks were selected and transferred to the laboratory. Accordingly, from collected rock samples, 150 cylindrical cores of diameter 54 mm were prepared and physical and mechanical tests were performed according to (ISRM, 2007) and (ASTM, 2001) guidelines. In this research, after sampling of the study area and preparing the core for the lithological characteristics of the samples by providing thin sections of them with polarizing microscopy was studied.
Results and discussion
By considering the results of laboratory tests and analysis from Harsin peridotites in Kermanshah province, we can acclaim that with increasing the percentage of minerals in olivine and pyroxene in rock, the strength was decreased and the levels weaknesses, which is due to the weak structure of the mineral-olivine and pyroxene. According to the physical properties test and Anon classification, the porosity percentage in porosity percentage is low and as a result the amount of water absorption index is low. Based on the Gamble classification, all peridotites are very resistant to durability and based on the Franklin and Chandra classification, all samples are extremely resistant. The results of this study showed that the single axial compressive strength, elasticity modulus, point load index and tensile strength were decreased with an increase in humidity content of peridotite samples. This is due to the fact that with the increase of humidity pore pressure of water increases. According to the Anon classification, the peridotites are very high in terms of the length of the longitudinal passage through the rock. The highest compliance between the Brazilian Tensile strength test (BTS) and Schmidt hammer (SHV) was achieved in the dry condition and the determination coefficient (R2) equals to 0.95 was obtained. Also there is an acceptable relation between the Brazilian Tensile Strength Test (BTS) and the dry volume unit weight (γd) with the determination coefficient (R2) of 0.93. In addition, there is an admissible relationship between durability test and single-axial compressive strength, with a coefficient determination (R2) of 0.94. Regarding the obtained regressions in this study, the physical and mechanical properties show good agreement and most of the equations have an acceptable coefficient determination.
Mohammad Emad Mahmoudi Mehrizi1, Younos Daghigh, Javad Nazariafshar,
Volume 14, Issue 1 (5-2020)
Abstract

The increasing rate of construction activities in urban areas is accompanied by excavation in the vicinity of existing structures and urban utilities. This issue has highlighted the importance of constructing protecting structures in order to control displacements and prevent damage to structures and their neighboring area. Among the important widely used wall stabilization techniques, one can name nailing and grouted anchors. However, these methods suffer some drawbacks such as annoying noise and vibration during the drilling, implementation difficulties below the water table, grouting problem, installation of strands and bars in the borehole in porous and collapse soils, and long curing time for the grout of post-tension anchors. Since the helical anchor method lacks many of the mentioned problems, it is now widely used in many applications.
In the present work, a laboratory model of helical anchor stabilized wall is presented and evaluated. For this purpose, four types of anchors at 20° back slope are designed in a sandy soil and the effect of helix configuration (in term of its diameter and number of blades) is investigated. Considering the laboratory scale of the designed model, the results obtained using helical anchor were compared with numerical results of soil nailing wall by applying the particle image velocimetry (PIV) analyses.
Material and methods
The test box designed in this work is made of a metal plate with a thickness, length, width, and depth of 1.5 mm, 100 cm, 60 cm, and 30 cm, respectively, and a Plexiglas in its opposing side with a thickness of 50 mm. The soil used in the experiments was the dry sand of Soufian region in east Azerbaijan province of Iran. The soil is classified as SP according to USCS classification. The helical anchors were fabricated by welding the helical pitches to a metal shaft. The end part of the shafts is screw threaded such that to fasten a bolt to them.
To start the experiment, the empty box was completely cleaned using the detergents to remove any pollution or soil on the Plexiglas and metal surface. Afterward, the sandy soil was poured on the wall floor and the facing was placed inside the box vertically. Again, the sandy soil was poured from both sides of the facing up to the installation height of the helices. Helices were installed in the assigned holes and their angle was adjusted through the pre-fabricated stencils. The soil height was increased up to the next row assigned for helices installation. These steps were repeated until reach the wall crest. After preparation of the physical model, its behavior during the preparation must be modeled. We first filled both sides of the model and then modeled the stability behavior of the helical anchor wall through excavating its facing opposed side. Overall, the wall was built through eight excavation steps.
Results and discussion
The maximum displacement is related to the anchor type 1, which does not have enough bearing capacity under surcharge conditions. By changing the anchor type and increasing the number of helices, shear strains and their expansion in the wall back decline. The decrease in displacement rate by changing the anchor from type 1 to type 2 is 18%, which is due to the low bearing capacity of type 2 anchor compared to the type 1 anchor. Increasing the number of pitches from one to two (changing the type 1 anchor to type 3 anchor) showed a considerable decrease (i.e., 43%) in displacement rate. Increasing the number of pitches from 1 to 3 (changing the anchor from type 1 to type 3) resulted in a 62% decrease in wall crest displacement. This displacement decrease rate seems to decline with an increase in the number of helixes.
The displacement rate for all four anchors is almost similar in two excavation steps, which probably is because of the need for displacement for activation of the anchors. One strategy to deal this issue in the sensitive projects and control the displacement is to apply post-tension helical anchors. Then, in stages 4 to 6, the displacement was almost constant due to four main reasons including wall rigidity, the presence of reinforcements, formation of pre-step displacement-induced tension force, and enough capacity of anchors to face with more displacement. In stages 6 to 8, type 1 and 2 anchors showed growing displacements due to the reduction and ending the wall rigidity and lower bearing capacity. In type 3 and 4 anchors, the maximum displacement was related to 4 initial stages. In type 1 and 2 anchors, which have two helical plates, almost a similar behavior was observed until stage 6 of excavation, but eventually type 3 anchors showed better performance because of higher bearing capacity to overall displacement.
Conclusion
In the present study, a physical model was designed to investigate the effect of helical anchors’ geometry on displacement rate of helical anchor wall and compare it with a nail wall. Overall, comparing the results obtained by conducting these experiments on a helical anchor stabilized wall and a nail wall revealed that:
- Wall crest displacement is affected by the diameter and number of helices and decreases by an increase in bearing capacity.
- The increase in the number of pitches from one to two (single-pitch to double-pitch anchor) has a higher effect on displacement control compared to the case of changing the double-pitch to triple-pitch anchor. So, it can be stated that a further increase in the number of anchor pitches results in a declined performance of the anchors.
- All anchors need a slight displacement for activation. This issue cannot be resolved by changing the type of helical anchors. Hence, when the displacement required for activation of the anchors exceeds the allowable wall crest displacement, use of post-tensioned helical anchors is recommended.
- A comparison between nailing and helical anchor results revealed that the relative density of the wall stabilized with the helical anchor is less than that of the nail wall; and wall crest displacement in the helical anchor wall was very lower than that of nail wall. Thus, the helical anchor wall stabilization is preferred when other economic and technical requirements are met.
Shima Sadat Hoseini, Ali Ghanbari, Mohammad Ali Rafiei Nazari,
Volume 14, Issue 2 (8-2020)
Abstract

Introduction
The discussion of modeling the interaction of soil-pile groups due to a large number of parameters involved in is one of the complex topics and it has been one of the interests to researchers in recent years and has been dealt with in various ways. In recent years, the artificial neural network method has been used in many issues related to geotechnical engineering, including issues related to piles.. In this study, firstly it was tried to explain the importance of soil - structure interaction in calculating the dynamic response of bridges. Then, the effect of different effective parameters in calculating the interaction stiffness of the pile - soil group using artificial neural network was studied.  For this purpose, firstly, Sadr Bridge ( The intersection of Modarress and Kaveh Boulevard because the presence of tallest piers ) in the transverse direction, considering and without considering of the effect of soil - structure interaction was analyzed. The analysis was carried out in which the substructure soil was replaced with a set of springs and dashpots along the piles. Considering the fact that many factors are involved in determining the equivalent stiffness of springs, in the second stage, the effect of different factors on the stiffness of spring equations using artificial neural network was investigated. Finally, the artificial neural network method was used as a suitable method in order to estimate the equivalent stiffness values, the equivalent stiffness of the pile - soil group was introduced for different input values. equivalent stiffness of the substructure soil using the artificial neural network ,has not been used by researchers yet, so estimation of the optimal length and diameter of piles used in constructions and estimating the seismic performance of the bridge system after its implementation could be effective .
Material and methods
In this paper, spring-dashpot method is proposed to the non-uniform analysis of single-pier bridges which led to a 5-degree freedom model in the case of Sadr Bridge. This study also endeavors to investigate the SSI effect in dynamic analysis of bridges. This method is based on the traditional spring-dashpot method but in this method, non-linear stiffness is used along the piles, instead of linear stiffness and upgraded shape functions and coefficients are applied to make more precise mass, stiffness and damping matrices. Then the seismic responses of Sadr Bridge are compared in different conditions including or excluding the SSI effects. Considering the fact that in the present study to calculate the stiffness of the soil-pile group at depth, due to the effect of soil - structure interaction, the recommended method by API is used, the study of neural network analysis was used and the effect of different parameters used to determine the complexity of the soil-pile group system has been evaluated. The multi-layer feeder network, which has the most application in engineering issues, has an input layer, an output layer and one or more layers of hidden content, has been used for this purpose.  The best model of the neural network with a topology of 1-20-6 was provided using the hyperbolic sigmoid activation function, and the Levenberg Marquardt model and the training cycle 84, which had the least error mean square and the best regression coefficient. The effect of internal friction angle, soil density, pile diameter and the resistance per unit length has been evaluated with this method.
Results and discussion
[8] ارائه شده است صورت می پذیرد In this study, the importance of considering the effect of soil - structure interaction on the dynamic response of the Sadr Bridge was studied. Dynamic stiffness of the soil around the pile group was calculated based on the equivalent linear method and using the p-y springs. So, the effect of substructure soil was considered in dynamic analysis of the system . The artificial neural network was used to predict the stiffness of the soil - pile group, based on various input parameters and the stiffness sensitivity analysis of the calculated output values was conducted. In hard soils, the stiffness of the pile - soil group increases with increasing the diameter of the pile in the range of 1 to 1.5 m in diameter. However, in the range of 0.5 to 1 m in diameter, the diameter of the pile does not have much effect on the stiffness of the system and also stiffness decreases in the range of 1.5 to 2 m in diameter by increasing the pile diameter. Soil specific weight and angle of internal friction can change the system stiffness but the effect of the soil specific density is much greater on the stiffness of the soil-pile group system. Generally, the specific density in the range of 1000 to 2300 (kg/m3) will increase the stiffness of the system. In general, the ultimate strength of the soil among 100 to 550 (kN/m) affects the system stiffness. This effect within the ultimate strength between 100 and 220 (kN/m) causes increasing in the interaction stiffness value of the system and in the range of 220 to 550 (kN/m) causes reducing the stiffness of the system . The ultimate strength values ​​in a unit of length outside of the above range have little effect on the system interference stiffness. Despite the fact that the problem of calculating the soil - pile interaction stiffness is a direct solution, the use of the proposed neural network model can help in predicting optimal values ​​of diameter and length of the pile to achieve maximum soil- pile stiffness and especially for long bridges it will has a significant impact on reducing cost and seismic design of the bridge.
Conclusion
The results of this study are as follows:
The results showed that considering the interaction effect, although it increases the relative displacement of the deck, reduces the maximum base shear and moment. This suggests that considering the maximum base shear and moment in the interaction conditions may not lead to a seismic design for certainty, although closer to reality.
Artificial neural network is an efficient way and new method to predict the stiffness of the soil-pile group system based on different input values that have not been used yet. So that with the physical and mechanical properties of the soil as well as the geometric properties of the piles, it is possible to predict the interaction stiffness values with the proper precision.
According to the results and diagrams obtained from the neural network model, which are mainly sinusoidal, the optimal values ​​of the interaction stiffness can be obtained by obtaining the pile diameter, specific gravity, the internal soil friction soil to achieve optimal interaction strength. It is also possible for each site to estimate the depth of the piles in order to achieve optimal hardness. 
./files/site1/files/142/4Extended_Abstracts.pdf
Semaneh Ghasemvash, Rouzbeh Dabir,
Volume 14, Issue 3 (11-2020)
Abstract

Introduction
Pavement layers as a part of road structure play an important role and provide a flat and secure surface. Subgrade layer could act as a compacted embankment, natural or stabilized ground. Subgrade is a foundation of pavement layers, and it withstands all of loads due to vehicles that are transferred from upper layers (i.e., subbase, base and asphalt layers).Therefore, constructing pavements with bearing capability, high durability, quality, and maintenance in proper operating conditions is very important. However, suitable materials for constructing pavement layers are not available, and improvement techniques should be employed for them. Generally, different methods such as mechanical or chemical are available for improvement. Nowadays, geosynthetic materials such as geotextile and geogrid are used to optimize and enhance the bearing capacity of pavement layers. The present study is aimed to investigate the effects of geotextile applications on bearing capacity of clay-gravel mixtures in pavement layers.
Material and Methods
In this research, materials were prepared from Barandouz area. Clayey soil was mixed with gravel in 25, 50 and 75 percentages (by weight). Geotextile was woven and made of polypropylene (with commercial name Fibertex-F-32). Geotextile effects in mixture were evaluated in two conditions. Position number one indicates the arrangement of geotextile.  This means, at first, one geotextile layer was embedded in the middle of materials. Then, two and three geotextile layers in equal depths from each other were used in soil mixtures. Position number two shows the mixing pieces randomly. This means that geotextile pieces in 1×1 and 5×5 cm2 were prepared and were randomly mixed with materials in 1, 2 and 3 percentages (by weight). For evaluating geotechnical behavior of improved clay-gravel mixtures, compaction and California bearing ratio test (CBR) (in dry and saturate conditions) based on ASTM were performed.        
It should be noted CBR test in dry and saturate conditions were carried out in three different compaction energies (i.e. 10, 25 and 56 blow count for per layer). Moreover, CBR was evaluated for piston penetration at 2.5 and 5 cm in the specimen.
Results and discussion
The findings of this study could be summarized as:
1. Results of compaction test showed that, in the unimproved position, with increasing gravel content in clay, maximum dry unit weight (γdmax) has been increased, while simultaneous optimum water content (wopt) decreased.
In the improved position, in the first mode, when a geotextile layer was embedded in the middle of the specimens, γdmax reached to its upper value, whereas wopt reached to its minimum value. On the other hand, with an increase in the number of geotextile layers in clay-gravel mixtures, dry density has been decreased, but optimum water content increased. Furthermore, in the second mode, when geotextile pieces with 1×1 and 5×5 cm2 were randomly mixed in the specimens, the findings revealed that geotextile pieces with 1 cm2 areas and 1% by weight in clay-gravel mixtures increases γdmax and reduces wopt.
2. In dry and saturate conditions, California bearing ratio (CBR) test result displayed that in the unimproved condition, with an increase in gravel content in the clay, CBR value has been increased. In the improved situation, in the first mode, when a geotextile layer was embedded in the samples, CBR had a maximum value in all of the compaction energies even though it is reduced as the number of layers increased. In the second mode, when geotextile pieces in 1×1 cm dimensions with 1% (by weight) were randomly mixed with the specimens, CBR value reached at high.  In contrast, with increasing dimensions of pieces and percentages in the presence of geotextile in clay-gravel mixtures, CBR values declined.  Therefore, it can be concluded that, according to Code 234 (Iran Highway Asphalt Paving Code), the application of one geotextile sheet in the middle of materials or geotextile pieces in 1×1 cm dimensions with 1% (by weight) random mixing  is suitable for subbase and base layers in pavement design.
3. CBR test results in the saturate condition in clay-gravel mixtures illustrated that, in the non-reinforced condition, with an increase in clay content in specimens, swelling value keeps rising sharply. On the contrary, in the reinforced position with embedding a geotextile layer in the middle sector of samples or through adding geotextile pieces (1 cm2) with 1 % content  (by weight) to the specimens, the rate of swelling significantly decreased.   
Conclusion
To sum up, the main objective of the present study was to investigate the impact of geotextile applications on bearing capacity of clay-gravel mixtures in pavement layers. The findings demonstrated that when geotextile as a layer was embedded in the middle part of specimens or as pieces with 1×1 cm dimensions and 1% content (by weight) was randomly mixed with the mid materials, the bearing capacity of the reinforced specimens was enhanced.  In contrast, in the saturate condition, swelling potential significantly was reduced. It is noteworthy to mention that 1 cm2 pieces of geotextile is more effective than the layers. This is due to the fact these pieces make aggregates closer to each other. Thereby, minimum void ratio (emin) reaches its least value, the structure of grading improves, and the contacts between particles and geotextile pieces rise. As a suggestion for further research, it looks promising to evaluate the dynamic properties and the behavior of the improved materials with other geosyntheticses.
 
Moslem Babaei, Ali Raeesi Estabragh, Jamal Abdollahi, Mohadeseh Amini, Gholamali Vakili,
Volume 14, Issue 3 (11-2020)
Abstract

Introduction
Expansive soils are a very common cause of extreme damages because they are susceptible to volume change due to a change in water content. Geotechnical problems associated with the expansive soils are well documented in different literature. As a result, a clear understanding of the behavior of such soils is required for the effective design of structures and infrastructures on these soils. The effects of hydrocarbon pollutants as a flooding fluid on the swelling potential of an expansive soil during wetting and drying cycles have not been considered in the previous researches. The aim of this research is to study the properties of an expansive soil with different flooding fluids, i.e. distilled water and solutions of glycerol with 10 and 20% through a number of cycles of wetting and drying tests under constant surcharge pressure.
Material and methods
The soil that was used in this work was a highly expansive clay soil (according to the classification by McKeen (1992)). It was prepared by mixing 20% bentonite and 80% kaolin. This soil was classified as a clay with high plasticity according to the Unified Soil Classification System (USCS). The optimum water content in the standard compaction test was 18.11% and the maximum dry unit weight was 16.27 kN/m3.
Distilled water and solutions of glycerol with concentrations of 10 and 20% were used for flooding the samples. To prepare the glycerol solutions, the required amount of glycerol was mixed with distilled water.
For making compacted samples for testing, the needed air-dried soil was weighed and the required water was added to it to reach the desired water content (4% below the optimum water content according to the compaction curve). The soil and water were mixed by hand and then was kept in a plastic bag for 24 hours to allow the uniform distribution of moisture in the soil. Samples were prepared by static compaction of the moist soil in a special mould.
A conventional oedometer was modified to allow the wetting and drying tests to be conducted under controlled surcharge pressure and temperature. During wetting and drying, the vertical deformation of the sample was measured by using a dial gauge. The variation of water content with void ratio during wetting and drying cycles was determined by using the information from the duplicated samples.
Results and discussion
Fig. 1 shows the variations of vertical deformation during wetting and drying cycles for samples that were flooded with distilled water and solutions of 10 and 20% glycerol. This figure illustrates that by increasing the number of cycles the amount of irreversible deformation is reduced until the equilibrium condition is achieved where the deformation due to wetting and drying is nearly the same. These results indicate that by increasing the concentration of glycerol the equilibrium condition with reversible deformation is reached in a fewer cycle of wetting and drying than the sample that was flooded with distilled water.

Figure 1. Wetting and drying cycles for different quality of flooding fluids
The results of void ratio versus water content at the equilibrium conditions for the samples flooded with distilled water and solutions of 10 and 20% glycerol (that were obtained from duplicated samples) are shown in Fig. 2. This figure displays that the paths of drying-wetting for different flooding fluids are nearly S-shaped curves. It is also seen in this figure that the order of the curves in this space is dependent on the percent of glycerol, the curves for the sample flooded with distilled water and 20% glycerol are located at the top and bottom of the space of void ratio against water content.

Figure 2. Water content-void ratio paths for different quality of flooding fluids
The change in the thickness of the diffuse double layer (DDL) affects on the swelling behavior of soil. The thickness of DDL is dependent on factors such as valency and concentration of cations, temperature, and dielectric constant. The value of dielectric constant for water is 80 and for solutions of 10 and 20% glycerol are 74.9 and 71.8, respectively. The magnitude of the attractive and repulsive forces between clay particles are inversely and directly depended on the value of the dielectric constant. The reduction in the value of the dielectric constant causes an increase in the attractive forces and leads to a reduction in the thickness of DDL. When the flooding fluid is a solution of glycerol, the initial chemical composition of pore fluid in the sample is changed. The chemical composition of pore fluid has different effects on the structure of clay soil such as changes in the thickness of DDL. When the flooding fluid is distilled water the pore fluid of samples has a dielectric constant of about 80. Therefore, the values of attractive and repulsive forces are not changed because of the same dielectric constant of flooding fluid and pore fluid. The results of tests on these samples (flooded with distilled water) show that by repeating the wetting and drying cycles the potential of swelling is reduced and after several cycles a reversible equilibrium condition is attained as depicted in Fig.1. When the pore fluid is the solution of glycerol, the attractive forces are increased due to the reduction of the dielectric constant of pore fluid and causes a reduction in the thickness of DDL. The shrinking of DDL is led to the formation of flocculated structure in the soil and results in pasting of particles together leading to the reduction potential of swelling. When the concentration solution of glycerol is increased the dielectric constant is decreased, the magnitude of attractive forces is increased and the degree of flocculation of the soil structure is increased that is yielded to a reduction of swelling potential.
Conclusion
Effect of different flooding fluids on the properties of an expansive soil during wetting and drying cycles were studied. The following conclusions can be drawn from the present research:
-After a number of wetting and drying cycles, the observed irreversible          deformation was diminished and equilibrium was achieved. The solution of glycerol causes more reduction in the potential of swelling than distilled water.
-The wetting and drying paths in the space of void ratio and water content are S-shaped curves. The variations in the void ratio of samples flooded with the solution of glycerol are smaller than distilled water../files/site1/files/142/babaei.pdf
 
 
Mohammadkazem Amiri, Gholam Reza Lashkaripur, Siavash Ghabezloo, Naser Hafezimoghadas, Mojtaba Heidaritajri,
Volume 14, Issue 3 (11-2020)
Abstract

Introduction
CO2 injection in deep geological formations, such as depleted oil and gas reservoirs, in addition to the environmental benefits, is one of the effective method for enhanced oil recovery (EOR) as tertiary EOR. Presence of reservoirs with a pressure drop which require injection of gas in the southwest of Iran and having the technical and environmental effects of CO2 injection have created a huge potential for CO2 injection to EOR in this region. In the first step, to perform CO2-EOR, the geomechanical assessment is needed to find out pore pressure, in-situ stress magnitudes and orientations and fractures and faults conditions. In this paper, the initial in-situ pore pressure is predicted using modified Eaton method for 47 wells in the length of the study field and calibrated using repeat formation test and mud pressure data. In-situ stress was obtained by the poroelastic method for 47 wells in the length of the study field and calibrated using leak off test and extended leak off test. Then, the orientation of in-situ stresses is obtained based on image logs. Hydraulical and mechanical activities of fractures and faults were performed by critically-stressed-fault hypothesis
Material and Methods
In this paper, the initial pore pressure is calculated using modified Eaton method and other corrections that are proposed by Azadpour et al. (2015). The estimated initial pore pressure is validated using mud weight pressure (Pmw) and repeat formation tester (RFT) data. In-situ stresses are composed of three orthogonal principal stresses, vertical stress (SV), maximum horizontal stress (SH), and minimum horizontal stress (Sh) with specific magnitude and orientations. The magnitude of SV is calculated by integration of rock densities from the surface to the depth of interest. The poroelastic horizontal strain model is used to determine the magnitudes of the SH and Sh. Then, the estimated minimum horizontal stress from poroelastic horizontal strain model is validated against direct measurements of LOT and XLOT tests. The orientation of breakouts was determined based on compressively stressed zones observed in the UBI log and using Caliper and Bit Size (BS) logs. The hole elongates perpendicular to the SH and breakouts develop at the azimuth of Sh. Fractures and faults reactivation analyses are very important, they can potentially propagate upwards into the lower caprock and further through the upper caprock due to CO2 injection. Fractures and faults identification were performed based on image logs. Based on performed seismic interpretations by NISOC (National Iranian South Oil Company), 15 faults have been detected in the field. Fractures and faults conductivity and activity in the current stress filed affect on fluid flow and mechanical stability or instability of the CO2 injection site. Critically stressed fault hypothesis, introduced by Barton et al. (1995), states that in a formation with fractures and faults at different angles to the current stress field, the conductivity of fluids through their apertures are controlled by the interplay of principal stress orientations and fracture or fault directions. Hence, conductive and critically stressed fractures and faults in the current stress field were evaluated using critically stressed fault hypothesis. Fractures and faults are plotted in normalized 3D Mohr diagrams (normalized by the vertical stress), therefore conductive and critically stressed fractures and faults were determined.
Results and discussions
The maximum distribution of initial pore pressure was 20-25 MPa in the field and the average of initial pore pressure was 25 MPa in the field. Unlike the World Stress Map, the stress regime is normal in the reservoir. Because the Kazeroon fault and Dezful Embayment act as a strike-slip tensional basin, resulting in the subsidence of Dezful compared with other regions. The frequency distribution of calculated in-situ stress in 47 studied wells in the length of the field has been presented. The maximum frequency distribution of SV, SH and Sh were between 60-70, 50-60 and 30-40 MPa, respectively. A large amount of fracturing is observed in 20-25 m below the caprock. Based on the continuity of their low amplitude traces on the acoustic amplitude image of UBI, fractures are classified into 4 classes: discontinuous-open, continuous-open, possible-open and closed fractures. OBMI and UBI image logs processing were performed in 7 wells. As can be seen from the image log, and caliper analysis the most dominant strike of SH around the well is 27 and Sh strike is 117◦. These have two dominant orientation, some faults are along the strike of the Zagros fold-thrust belt (NW-SE) and the others are perpendicular to the Zagros fold-thrust belt strike (NE-SW).
Based on the normalized 3D Mohr diagrams it is clear that the fractures and faults that are oriented to the SH will be the most permeable, because the faults and fractures experience the least amount of stresses in the direction of SH and they have minimum resistance to flow in this direction, therefore will have relatively high permeability. Also, results showed the faults number 15, 6, 10 and 2 will be the most dangerous faults during CO2 injection.
 
 
Hojjat Ollah Safari, Hamed Rezaei, Afsaneh Ghojoghi,
Volume 14, Issue 3 (11-2020)
Abstract

Introduction
The landslides, as a natural hazard, caused to numerous damages in residential area and financial loss. In many cases, we can forecast the occurrence probability of this natural phenomenon with using of detail geological and Geomorphological studies. This seems that one of the most effective parameters in landsliding phenomenon is structural parameters, especially faulting in rocky outcrops. For verifying this hypothesis, the Nargeschal area, as high potential of hazardous area, is selected as case study for investigation on influences of faulting on landslide occurrence probability. Many large composite landslides were happened in 2016 and hence, this area is enumerated an active zone of landsliding. This area with geographic attitude 55° 09' 06" to 55° 27' 21" Eastern Longitude and 36° 54' 23" to 37° 05' 15" Northern Latitude located in south of Azad shahr (in Golestan Provinces) placed in Northeastern of Iran.
Geological studies indicate that this area located in northern limb of Alborz fold belt (as a young fold-thrust belt with 900 km length) which formed in late Alpine orogenic events by convergence Afro-Arabian and Eurasian plates. In this zone, the structures have main NE-SW trends with main active faults such as Khazar and North Alborz faults, as reverse faults with north-ward movements. The remnant part of Paleotethyan rocks (which transported from collision zone toward southern part by low angle thrusts) located between these faults and formed the mountain-plain boundary hills.
Material and Methods
In this research, we investigated on effective parameters in landslide occurrence probability of Nargeschal area with using of remote sensing techniques, GIS environment abilities and complementary field investigations. Therefore, we have prepared the seven data layers of geological and morphological effective parameters which are affected on landslide probabilities. These data layers consist of: lithology of outcropped rocks, faulting condition, topographic slopes categorizes cultivation circumstances, seismicity condition, spring population (ground water condition) and surveyed occurred landslides. Then, the content of each data layer is weighted and classified into five classes in GIS environment. Finally, the content of each pixels in all of 7 layers are algebraically summed and recorded as an attributed table. Hence, the landslide hazard zonation map was prepared by drawing the isopotential surface map on the basis of quantities of attributed table by using of GIS functions in Arc view 3.2 software.
Results and Discussion
The results of this research illustrate that a high risk zone is located in central part of area as an oblique broad-stripe zone with NE-SW trend [6]. This zone is correlatable with high density of fractures zone and high population of springs and earthquake focus and also, taken place in Shemshak formation with shale, marl and siltstone rocky outcrops (upper Triassic- Jurassic in age). 
Also, the results of investigations on influences of structural parameters (especially faulting) in landslide hazard demonstrated that faults are indirectly impressed on this hazard probabilities via formed the high slope topography, poor strength faulted rocks, locating of spring presences and creation of seismicity, and hence, defined the spatial pattern of landslides.
Conclusion
Nargeschal area in Northern limb of Eastern Alborz is selected as case study for investigation on temporal relationship between Faulting and Landslides. The following conclusions were drawn from this research.
- It seems that the fault surface plays the role of rupture planes for landsliding.
- The structural factors also increased the ground slope and then, the close relationship is formed between landslides and faults.
- The results demonstrate the genetically relationships between landslides and faults in macroscopic scale in Nargeschal area.
 

Mehdi Zare, Ali Moradzadeh, Abolghasem Kamkar-Rouhani, Faramarz Doulati-Ardejani,
Volume 14, Issue 3 (11-2020)
Abstract

Introduction
"Sulfide-carbonate" deposit is a term, which comprises a series of sulfide minerals such as Zn-Pb ore minerals, mainly considered as related to weathering of Zn-Pb sulfide concentrations and influence in sedimentary hosts (carbonate). There are more than 350 Zn-Pb deposits located in Iran, including world-class deposits such as Angouran, Mehdiabad and Irankouh. Due to the mining activity of these deposits, it creates a significant amount of mine waste that releases of these wastes in the environment causing severe problems. One of the main problems is the formation of Acid Mine Drainage (AMD). AMD is produced by oxidation of sulphide minerals, particularly pyrite (FeS2) in waste dump. Due to low pH and the ability to dissolve metals and other compounds, it can host a number of environmental problems. A phenomenon known as natural or alkaline mine drainage (NAMD) occurs at high pH values ​​when the neutralizing minerals are significantly present in the mine waste or when the oxidation of the sulfide minerals is poor. However, the metals and cationic species, such as Cu, Pb and Cd, are more soluble at low pH. In contrast, elements that form anionic species, such as Se, Cr, V, and Mo, tend to be more soluble at high pH and Ni, Zn, Co, As, and Sb, are soluble at near-neutral pH, and can potentially contaminate mine effluents, even without acidic conditions. Therefore Acid or Neutralization potential (AP&NP) of waste dump is significantly affects on the composition, transfers and fates of contaminations transmitted from waste dump. The aim of this study was to monitoring heavy metals concentrations and assessments of pollution potential of waste dumps in Anguran mine by static method and has been compared by mineralogical approach.
Material and methods
The Angouran Zn-Pb deposit is located in the 135 kilometers southwest part of Zanjan Province, NW Iran. This area belongs to the northwestern part of the Sanandaj-Sirjan Zone, a metamorphic belt related to the Zagros orogeny. Angouran mine is one of the most important carbonate hosted Zn-Pb deposits in Iran that mining activity has been created a significant amount of waste dump in around pit. To achieve the goals, the 47 samples taken from different surficial parts of the waste dump were analyzed by using the ICP-MS method to determine the concentration of elements and heavy metals. These elements and metals includes: Ca, Mg, S and As, Cd, Cr, Cu, Ni, Pb, Zn. The pollution index (PI) were modeled for heavy metal contamination risk zoning then modified Acid Base Accounting (ABA) static method was used to evaluate of acid and neutralization potential (AP&NP) of the waste dump samples and the results were modeled by Kriging method. At the end, mineralogical approach (Mg + Ca concentration) was used to determine the source of neutralization and to better interpret the static results.
Results and discussion
The results of contamination index showed that zinc, arsenic and cadmium had the highest average contamination index (18.89, 12.13 and 5.8, respectively) and the trend of total metal changes in the region as Zn> As> Cd> Pb > Ni> Cr> Cu was rated.
Datas measured in modified ABA method were modeled in 2D maps using the Kiriging method. Due to the low total sulfur content (less than 1%), all of the samples were Net Neutralization Potential (NNP) with a range of 49- 990 kg calcium carbonate per ton, and the study area was classified into three neutralization potential (NP), High (NP) and Very High (NP) levels. The mineralogical approach (Mg + Ca concentration) was used as a useful tool for better interpretation of modified ABA results and determines the neutralizing source. Mineralogical approach results indicate that calcite species are the main source of neutralization and have high correlation coefficient (R = 0.99) with the modified ABA method. In order to validate the results, the presence of mineral calcite was confirmed by XRD analysis on 4 samples.
Assessment of AP and NP of sulfide – carbonate waste dump in this research can be used as a basis model for other similar mines to control environmental problems and to identify the behavior and to transfer heavy metals in mine drainage in the future. Mineralogical approach results show that neutralizing potential and neutralizing source can be obtained without using expensive mineralogy analyses in this type of carbonate-sulfide deposit



 
Rasool Yazarloo, Amin Jamshidi, Seyed Abdolghader Amanzadeh, Abuzar Esfandyaripur,
Volume 14, Issue 3 (11-2020)
Abstract

Introduction
Loess soil is one of the problematic soils that should be improved its geotechnical properties before the project is implemented. Lack of attention to this issue has caused in many problems for civil projects in Golestan province. This has been more evident in some of the rural areas built on this type of soil. Moreover there are many reports regarding different geological hazard such as subsidence, divergence, erosion and landslide in Golestan loess soil. Among the different types of loess soils found in Golestan province, silty loess should be given more attention due to their large extent and being the bed soil of many villages, and many reports of its hazards.
One of the methods for improving soil mechanical behavior and its geotechnical properties is to use additives to reduce geological hazards. Due to the fine-grained structure of loess soils, the application of nanoparticles is more efficient and could result in solving many of the related problems. Nanotechnology is new scientific field which affects many aspects of engineering and in recent years, many efforts have been made to use this new technology in various geotechnical branches.
So far, research has been carried out on the improvement of various soil types with additives such as cement, bitumen, ash, lime and various types of nanoparticles. Nowadays, the use of nanoparticle additives due to reduction of environmental pollution than other additives has a wider application in improving the physical and chemical properties of problematic soils.
In the present study, the effect of nano-kaolinite on strength properties including uniaxial compressive strength, elasticity modulus, cohesion, and internal friction angle of silty Loess in Kalaleh city of Golestan province have been investigated.
Material and methods
In order to carry out the present research, sample of the silty loess soil from Kaleh city of Golestan province was collected and prepared. Then, 0.5, 1, 1.5, 2, 3 and 4 weight percent of nano-kaolinite were added to soil samples. The soil samples were prepared in a natural state (without additives) and with the additive for uniaxial compressive strength and direct shear tests. Strength properties of soil specimens including uniaxial compressive strength, elastic modulus (based on uniaxial compressive strength test), cohesion and internal friction angle (based on direct shear testing) were determined for native soil and its mixture with different percentage of nano-kaolinite. The data were analyzed and the effect of nano-kaolinite on the strength properties of the silty loess soil sample was investigated.
Results and discussion
Uniaxial compressive strength and modulus of elasticity have been increased with increasing amount of nano-kaolinite, and after 2% nano-kaolinite, increase in nano-kaolinite did not have any significant effect on uniaxial compressive strength and modulus of elasticity. The uniaxial compressive strength and the modulus of soil elasticity in the natural state (without nano-kaolinite) are 1.12 and 15.89 kg/cm2 respectively, and when 2% of the nano-kaolinite is added to the soil, the values ​​of these properties are maximal and reached to 1.19 and 18.10 kg/cm2, respectively.
For native soil (without nano-kaolinite), the cohesion value is equal to 0.09 kg/cm2, and with increasing nano-kaolinite from 0.5 to 2%, the cohesion shows an incremental trend and reached to 0.16 kg/cm2. With increasing the additive percent from 2 to 4% the amount of cohesion were constant and equal to 0.16 kg/cm2. The increasing of cohesion can be attributed to the fact that nanoparticles enhanced water absorption of soil particles which caused in better cohesion and also they affected chemical actions and surface electrical charge of soil particles.
Conclusion
The results of the uniaxial compressive strength tests show that adding up to 2 weight percent Nano-kaolinite to the dry soil increases the uniaxial compressive strength and modulus of elasticity of silty loess soil in the Golestan province, which can be due to proper locking between the nanoparticles and soil particles and increased cohesion.
The results of direct shear tests showed that adding up to 2% nano-kaolinite to dry soil increased the cohesion of the soil and consequently increased the shear strength of the soil.
On the other hand, adding the different amount of nano-kaolinite has not changed much in the internal friction angle of the silty loess soil in the Golestan province.
 
 
Ali Saket, Seyed Mahmud Fatemi Aghda, Ahmad Fahimifar, Hossein Sadeghi,
Volume 14, Issue 4 (12-2020)
Abstract

Introduction
 Analysis of time, location and magnitude of foreshocks and aftershocks has been one of the most important cases for experts in various scientific fields such as: seismology, structural engineering and crisis management, and other interrelated fields. Since this analysis and the result of studies on seismotectonic and cases of earthquakes help us identify the foreshocks and aftershocks with the goal of decreasing losses and nervious stress of the injured community in quake-stricken areas and skilled crisis management. The cause fault of earthquake plays the important role in foreshocks and aftershocks of the earthquake. So, study on fault behaviour is a suitable method for analyzing and routing the basic parameters of foreshocks and aftershocks. Also, foreshocks and aftershock are important parts of any earthquake in a seismic area. The analysis of the basic parameters of the foreshocks is one of the most practical researches for reducing the risk of earthquakes. The identification of behavioral pattern of foreshocks can help researchers detect the active fault conditions for the occurrence of earthquakes in different areas. The present study is concerned with the study of behavioral patterns earthquakes, foreshocks, and aftershock of Zohan earthquake. Experience of large aftershocks in different parts of the world indicates that, following earthquakes and depending on seismic-tectonic conditions, large aftershocks are likely to occur in the earthquake-effected zone, which will aggravate the damage caused by earthquakes (Omi et al., 2013). The main factor contributing to the worsening of damage caused by aftershocks is the performance of structures that are weakened but not destroyed by main earthquakes and are, thus, highly likely to be destroyed by large aftershocks (Saket and Fatemi Aghda, 2006).
Material and methods
The present paper makes use of data collected in a real earthquake and similar expriences in other earthquakes for presenting a practical pattern for predicting primary earthquake patterns, determining the location, magnitude, and time of aftershocks. The target of this case is decreasing the effects of earthquake. To this end, we used the results from studies on basic parameters of foreshocks and aftershocks of Zohan earthquake, and 2012 earthquake in South Khorasan province. The rationale for selecting the aforementioned studies is: location of event, the Zohan earthquake, had been identificated as an area with high risk for the occurrence of earthquakes, although there has been no wide-scale earthquake in this area in the last two decades. These conditions are important causes for more concentrated studies on this area because there is a high chance for wide-scale earthquakes striking this area.
Result and Discussion
In this part of research, we conduct a study on the location, magnitude and depth of foeshocks. Some of the world-wide research suggested that these data can help to predict the time of  mainshocks. Studies conducted on the variations of frequency in foreshocks can follow this goal.
In this paper, the available statistical data such as periodical variations of seismicity in the weeks leading up to the main shock can be used as a tool for estimating the approximate time of a future important earthquake. The weekly variations of seismicity before Zohan earthquake indicate a relative increase and then decrease within a 100 km radius around the epicenter of the main shock.
 
Table 1: Variations of frequency of foreshock based magnitude before Zohan earthquake
Week before main shock Frequency of foreshock in the Radius of 100Km from main shock Frequency of foreshock(with M>2.5) in the Radius of 100Km from main shock
6 0 0
5 1 1
4 1 0
3 2 0
2 5 3
1 2 0
 
Studies on numerous earthquakes in Iran and other regions in the world show that the distribution of aftershocks can be related to fault type or the direction of principal stress (Saket and Fatemi Aghda, 2006) and (King et al., 1994). Whereas maximum Coulomb stress change is related to maximum principal stress in earthquakes, the concentration of aftershocks can coincide with the direction of maximum principal stress (σ1) of the causative fault in mainshock. Considering the direction of maximum principal stress and its adaptation to the scattering of aftershocks, the above hypothesis is confirmed.
Also studies on frequency changes and seismic quiescence of small aftershocks help us in predicting future aftershocks. The results the of presented research by Itawa (2008) on the World earthquake catalogue suggest that seismic quiescence theory is true for different regions of the world. Based on the results of the  study mentioned above, this case can be used as a tool for predicting large aftershocks in Zohan earthquake.

Fig 1. Adaptation of direction of maximum principal stress with scatering of the aftershocks of Zohan earthquake. a: direction of maximum principal stress (σ1) of the causative fault in mainshock. b- scaterring of the aftershocks
Table 2: Seismic sequience versus magnitude of aftershocks
Row Seismic Quiescence for aftershocks Aftershock Magnitude Data and Time of aftershocks
1 13 3.0 2012/12/05
17:21:03
2 36 3.4 2012/12/05
17:57:03
3 161 3.1 2012/12/05
20:38:09
4 3906 3.9 2012/12/08
13:44:19
In addation, frequency of aftershocks and certain time distance (seismic quiescence) between their can use precursors for detecting the time of large aftershocks. The relevant analysis in this study showed that methods such as: time series beside seismic quiescence can help in conducting a more accurate time forecast of large aftershocks.
Conclusion
  • The results of this research suggest that we can identify some of the charactristics of the main shock by focusing on location, magnitude and depth of foeshocks.
  • In Zohan earthquake, the direction of maximum principal stress is adpated to the scattering of aftershocks, and this case suggests that there is a specific relationship between them.
  • The relevant analysis in this study showed that the methods such as: time series beside seismic quiescence can help conduct a more accurate time forecast of large aftershocks../files/site1/files/144/saket.pdf

Vahid Shirgholami, Mahdi Khodaparat, Abolghasem Moezi,
Volume 14, Issue 4 (12-2020)
Abstract

Introduction
Excavation in urban areas occasionally is accompanied by the improper performance of the support system for even small deformations. In this regard, deformation control design based on force-based approaches provides a more realistic reprehensive of excavation performance. Top-down deep excavation techniques are among the modern excavation stabilization methods in urban areas. In this method, unlike the conventional methods, it is possible to perform the excavation and construction operations simultaneously. The present study aims to investigate excavation stabilization using the main structure through the top-down approach. For this purpose, field and numerical evaluations of the stabilized project were conducted based on the top-down approach in the downtown of Qom city, Iran. This research reports the information obtained through monitoring and modeling using the finite element ABAQUS software, predicting the occurred deformations until the end of excavation operations using the calibrated model, and offering an initial estimation of the required stiffness for the support system with respect to the lateral deformations in four sites proposed, according to the studies of Line A Qom Subway.
Project specifications
Based on the geological studies of Line A Qom Subway Tunnel, the geological layers are classified into four soil classes. Qc-1 consists of gravely sand with fine content of 5 to 20%; Qc-2 is silty and clayey sand with fine content of 35 to 60%; Qf-1 is clayey silt with fine content of 60%; and Qf-2 is a silty clay layer with fine content above 60%. Line A of Qom subway passes the study area of the present study, which is located in Ammar e Yaser Street (Station A6). Based on the geotechnical studies of the project site, the site in the levels near the ground consists of Qc-2 but in the lower elevations, it is composed of Qc-1 and Qf-2.
Salam Trade Complex, located in the downtown of Qom city, has 6 underground stories and 6 above-ground stories. It is limited to the main street in the south and to urban decay in the three other directions. The final excavation depth, length, and width is -21, 36, and 32-52 m, respectively. The project structure consists of a steel moment frame with a retaining wall in the negative elevations and metal deck frame for ceiling construction. In this project, excavation wall deformation was monitored in three important sections (A, B, and C). Due to the vicinity to urban decay, a total station TS02 was used for monitoring these sections. According to the field surveys, the maximum horizontal deformation of the walls in sections A, B, and C is 24.10, 42.16, and 47.21 mm, respectively, which were measured in the 0, -1.5, and 0 m elevations.
Monitoring process and numerical simulation
To calibrate the prepared model, a sensitivity analysis was performed on geotechnical parameters including modulus of elasticity (E), internal friction angle (φ), and cohesion (C) of the layers by simulating 60 numerical models. Based on the sensitivity analysis results, an increase in internal friction angle and elasticity modulus for layer 1 (i.e., φ1 and E1) and elasticity modulus of layer 3 (E3) results in a decrease in lateral deformation. Finally, using the sensitivity analysis results and after several trials and errors, the numerical models for sections B and C were calibrated when reaching the depths of -8 and -11 m, respectively. Using these models, then, it is possible to predict deformations up to the end of the project.
To determine the required stiffness for the excavation support system, regarding the acceptable deformation of the adjacent soil mass, 160 numerical models were built and their results were analyzed. Based on the results of Brason and Zapata (2012), relative stiffens (R) were used to develop a relationship between the maximum lateral deformation of the wall and the required stiffness of the support system. R is a dimensionless parameter that represents the stiffness of a solid support system; the greater this value is, the more flexible the system would be. In this study, caisson pile length, excavation width, and buried depth of the wall were used for determining the R.
R =                                                        (1)
Figure 2 presents the maximum occurred deformation in terms of depth versus the relative stiffness for sites QC and QF.

Figure 2. Maximum deformation in terms of depth versus the relative stiffness for sites QC and QF
Conclusion
  1. According to the monitory data, the maximum lateral deformation in sections B and C until the end of the project was 42.16 and 47.2 mm, respectively. Moreover, the deformation of the other points inside the excavation was 30 mm.
  2. Considering the occurrence of maximum lateral deformations in the higher elevations in the monitored sections, it is inferred that excavation support at the ground level plays a key role in this approach. Hence, the lack of completing the structural frames and slabs for facilitating the excavation operation can lead to an increase in deformation levels.
  3. Based on the prepared graphs, the top-down approach in sites QC-2 and QF-2, compared to sites QF-1 and QC-1, provides a more desirable performance for deformation control.

Soheil Ghareh, Kimiya Yazdani, Fatemeh Akhlaghi,
Volume 14, Issue 4 (12-2020)
Abstract

Introduction
The existence of problematic soils due to their geotechnical properties, such as low strength and stability, high compressibility, and swelling, is one of the most important issues and challenges that geotechnical and civil engineers are faced in urban environments, especially in metropolises. Various methods are used to stabilize and to improve the behavior of problematical soils such as compaction, consolidation, stone columns, jet grouting, biological procedures, and additive materials including nanomaterials. Because of their high specific surface, the use of nanoparticles is very effective to increase the shear and mechanical strength parameters of soil. Mashhad city is located on alluvial deposits of Mashhad Plain. A wide area of this city, especially the central and eastern areas where the Imam Reza holy shrine is located, has been built on weak and fine-grained deposits. Considering constructing high-rise buildings such as hotels and commercial complexes in these areas, as well as the need for restructuring the urban decay, the soil improvement will be inevitable. Given the significant application of these nanoparticles, the purpose of this study is to investigate the effects of nanoclay and nanosilica on each other and to find their optimal composition as a suitable alternative for traditional materials to improve the weak and problematic soils. This not only increases the bearing capacity and strength properties but also reduces the cost and time of project implementation.
Method and Materials
To achieve a hybrid with maximum strength and bearing capacity in executable projects, laboratory tests were performed on the soil picked up from the vicinity around Razavi holy shrine in Mashhad mixed with nanoclay and nanosilica. The type of soil is classified as CL-ML based on sieve and hydrometer tests. The nanoclay used in this research is the type of montmorillonite- K10, and the nanosilica is as a powdered shape with 99% purity.
At first, nanoclay and nanosilica were mixed independently with soil in six different weight ratios (0%, 0.1%, 0.5%, 1%, 2.5%, & 5%) and (0%, 0.1%, 0.25%, 0.5%, 0.75%, & 1%). Soil mechanical and strength properties, including compressive and shear strength, settlement, plasticity index, and swelling, were studied by standard laboratory tests on all specimens. After determining the optimum ratio of each nanoparticle, four hybrids consisting of nanosilica and nanoclay were made in four different combinations and then the effects of these four hybrids were investigated on the soil in the laboratory scale (Table 1).
Table 1. Composition of hybrids made with different percentages of nanomaterials
Nanomaterials composition Hybrid Name
5% Nanoclay + 0.25% Nanosilica 5NC + 0.25NS
5% Nanoclay  1% Nanosilica 5NC + 1NS
2.5% Nanoclay + 0.25% Nanosilica 2.5NC + 0.25NS
2.5% Nanoclay + 1% Nanosilica 2.5NC + 1NS
Conclusion
The results of the Atterberg limit test on improved and pure soil indicate that the addition of nanoclay and nanosilica and the optimized ratios of these nanoparticles hybrid to increase the soil resistance parameters did not change the soil swelling index.
Evaluation of shear strength test results showed a significant synergistic effect of these nanoparticles on increasing the shear strength parameters. The nanoparticles hybrid of 2.5% nanosilica and 1% nanosilica increased the cohesion up to 106% and also hybrids of 5% nanosilica and 1% nanosilica increased the internal friction angle of soil up to 32%.
Examination of unconfined compressive strength tests presented a 134% increase in the compressive strength of the specimen improved with 2.5% nanoclay and a 620% increase in soil improved with 1% nanosilica. The optimum hybrid compositions of 5% nanoclay and 1% nanosilica increased significantly the compressive strength of the studied soil up to 785% and reduced the settlement of the soil by 60% compared to pure soil.
  1. Laboratory studies of electron microscopy examination on ​​pure and improved soil samples with nanoparticle hybrid revealed the presence of these particles in pores of the improved soil. On the other hand, the high specific surface area of ​​the nanoparticles increased the interaction of the soil particles, and the effect of adding these nanoparticles on the refining process is observed in compressive strength increase.
As the nanoclay, nanosilica, and hybrid of nanoparticles are the results of soil processing, these particles are very effective to solve the environmental problems because of good compatibility with soil environments. In addition, low volumes of nanoclay, nanosilica, and hybrid in these nanoparticles are necessary to increase the compressive strength and decrease the settlement of soil. Therefore, using these nanoparticles at the project site reduces significantly the cost and execution time of the project.
 
 
Habib Shahnazari, Mahmoud Fatemiaghda, Hamid Reza Karami, Mehdi Talkhablou,
Volume 14, Issue 5 ( English articles 2020)
Abstract

The present work is conducted to investigate the effect of texture and carbonate content on internal friction angle of carbonate soils. Carbonate soils are majorly found in the bed of shallow waters and also offshores in tropical regions. Recently there is a huge construction projects including oil and gas extraction platform and facilities, harbors, refineries, huge bridges and other big construction projects in many offshore and onshore areas around the world. One of these area is located on southern part of Iran. We collected soil samples from different parts of northern coasts of Persian Gulf, then the following experiments were performed, carbonate content, three-dimensional grain size, angularity, relative density & direct shear. The results showed that the average of internal friction angle of carbonate soil is higher respect to known silicate sands. This angle is affected by effective grain size, grain angularity, and calcium carbonate content. Based on the experimental results of this study, one of the results was that the internal friction angle of carbonate soils decreases as their effective size of soil aggregates increases.
 


Mr. Seyed Ali Ghaffari, Prof. Amir Hamidi, Dr. Gholamhossein Tavakoli Mehrjardi,
Volume 14, Issue 5 ( English articles 2020)
Abstract

This paper investigates response of triangular shell strip footings situated on the sandy slope. A series of reduced-scale plate load tests were conducted to cover different parameters including three shell footing types with different apex angles in addition to a flat footing, four different distances for strip footings from the crest of the slope namely “edge distance” and reinforcement status (unreinforced and geotextile-reinforced statuses). Bearing capacity of shell footings adjacent to crest of the slope, bearing capacity ratio, shell efficiency factor, influence of apex angle on settlement of footings and the mechanism of slope failure are discussed and evaluated. Also, empirical equations for determination of the maximum bearing capacity of triangular shell strip footings are suggested. As a whole, it has been observed that decrease of shell’s apex angle as good as increase of edge distance could significantly improve the bearing capacity. However, as the edge distance increases, the effect of apex angle on the bearing capacity got decreased. Also, it was found out that the beneficial effect of reinforcement on the bearing capacity decreased with increase of the edge distance. Furthermore, the efficiency of shell footings on bearing capacity was attenuated in reinforced slopes compared to the unreinforced status.
Ramin Sarikhani, Amin Jamshidi, Artimes Ghasemi Dehnavi ,
Volume 14, Issue 5 ( English articles 2020)
Abstract

Groundwater salinization in semiarid regions is a limiting factor of use with strategic importance. In this study, the sources of salinity, chemistry, and quality of groundwater in Robat (Khorramabad plain, Iran) were identified through the geochemical methods. Using data analysis, the concentration of cations and anions were recognized with the order of Ca2+>Na+ >Mg2+>K+ and HCO3-> Cl-> SO42+> NO3-> F-, respectively. The high concentration of Na+, Cl-, and EC in some places is attributed to the gypsum and salty formations. In the study area, the salinization processes are identified by natural and artificial activities. The salinization mechanisms are identified by the natural dissolution of gypsum and salt from Gachsaran formation and man-made sources including boreholes drilled through Gachsaran Formation, salt mining, and agricultural activity. Also, the high concentration of nitrate is related to agricultural fertilizers and karstification effects. It is seen that the atmospheric NO3-. HCO3-, Ca2+, and Mg2+ concentration exceeded the standard limit in a few samples probably due to the calcareous formation. Besides, hydrochemical facies of the groundwater are Ca- HCO3 and Na-K-HCO3. Due to the presence of calcareous and salt bearing formations, 46%, 26%, and 20% of all samples show a higher concentration of Ca2+, Na+, and Mg2+, respectively, which exceed the permissible limits. Sulfate and fluoride concentrations are less than the permissible limits. However, due to the presence of calcareous formation, salt bearing formation, and use of agricultural fertilizers, 100%, 26%, and 20% of all samples show a higher concentration of HCO3-, Cl-, and NO3- than the permissible limits.
Mr. Mohammad-Emad Mahmoudi-Mehrizi, Prof Ali Ghanbari,
Volume 14, Issue 5 ( English articles 2020)
Abstract

The use of piles, helical anchors and, in general, helical foundations has considerably increased in the last 30 years. The adoption of this technology in the international and domestic codes of each country, as well as in research and studies, and, finally, the publication of numerous books and papers in this area, and the existence of manufacturers’ products, committees, and contractors of this technology has contributed to its expansion and development. However, such methods have progressed at a very slow pace in many countries, especially in developing countries. This paper attempts to assess the global advancement of the helical foundations by reviewing 292 papers from 1990 to 2020 and comparing the related research findings. This will help clarify the issue and determine the scope of technological progress. On the other hand, collecting valuable papers in this area will make it easier for researchers to make further research. Subsequently, the characteristics of this technology are highlighted and the reasons for its lack of progress in the developing countries are addressed. For this purpose, a questionnaire is sent to researchers, developers, designers, and contractors of the geotechnical projects. The purpose of this questionnaire is to specify the type of existing projects, the soil type of project site, the degree of familiarity with the helical foundation technology, the reasons for not using this method and the solutions available to expand and develop this method. Finally, there are suggestions to develop this approach and the issues that need further research.
Mahnaz Firuzi , Mohammadhosen Ghobadi , Ali Noorzad, Ali Asghar Sepahi,
Volume 15, Issue 1 (Spring 2021 2021)
Abstract

Introduction
Landslides have an effective role in the destruction of freeways and railroads, which have been caused to many human and financial losses. Understanding this phenomenon and its effective factors can be important in planning for development projects and away from landslide prone areas. Based on extensive field in the Qazvin-Rasht freeway that the authors carried out in various researches in 2014-2017, it was found that the freeway was threatened by the type of instabilities due to variety of lithologies  and tectonic structures exploitation phase and needs to be stabilized. The purpose of this study is to determine of the distribution of landslides in different types of lithologicalunits of the Qazvin-Rasht freewaythat shows the role of geology and differences in geotechnical characteristics and tectonic structures in the creation and distribution of landslides on the road.The role of geology on the difference in geotechnical properties and tectonic structures in the creation and distribution in the road. Geological engineering properties and appropriate stabilization methods is the other goals of this study.
Material and Methods
In the study, the locations and the type of landslides are distinguished and the information were plotted on geological map. Then by the ARC GIS 10.2 program, and the use of area density method, the percentage of landslide events in each geological formation was identified. In order to study the role of lithology (type of rock, texture, mineralogy, weathering, alteration and erosion), sampling were carried out from rocks of Karaj formation, Shemshak formation, Cretaceous orbitalolina limestone and Fajan conglomerate. Geotechnical characteristics of the samples were determined by performing laboratory tests such as dry weight, porosity, uni-axial compressive strength according to ISRM standard (1979). For determining the role of tectonic structures (number of joints, dip and dip direction, length (m), spacing (cm), filling percentage, opening (mm), roughness, weathering, water, friction angle) were performed. Then, the results obtained from relative density and frequency were matched with the geological, geotechnical characteristics and tectonic structures of each formation.
Results
In order to separate different types of landslides on various kinds of rocks, area density and frequencyof  landslides were determined by Eqs 1 and 2. Graph of frequency and area density are presented in Fig. 6 and Table 2, respectively. As can be seen in this figure and table, in Karaj formation, the percentage of rock fall, toppling, avalanche, scree slope and combined slip are the highest. In the rocks belonging to the Shemshak formation, the susceptibility of the debris flow and landslides has been increased. In Fajan conglomerates and limestones of the Ziarat and Cretaceous formations, the rockfalls is more formed.
where LI: area density, AL:  area of landslides in each lithological unit, AT: area of landslides in total area.
where LF: frequency of landslide, NL:  number of landslides in each lithological unit, NT: number of landslides in total area.
Conclusion
Result showed that despite significant heterogeneity in lithology, geotechnics, engineering geology and tectonic structures, there are similarities between the types and distribution of landslides. Four of the identified landslides consist of rock fall, toppling, avalanche in the resistant and medium strength rocks such as andesite, trachy-andesite and basalts of Karaj formation, Cretaceous orbitalolina limestone and Fajan conglomerate with regard to the dominant direction of the joints in relation to the slope, the shear strength of the joints and their weathering, falling and scree slope in thesiliceous zone and composite landslide in the argilite-alounite zone due to the high alteration and groundwater level and water retention by the presence of clay minerals, landslide in the sequence of loose and resistant rocks, debris flow and landslides in the soils of Shemshak formation due to the lepidoblastic texture of the slate and their high erosion potential due to the weather climate along the Manjil-Rudbar freeway../files/site1/files/151/4.pdf
Mohammad Hossein Keyghobadi, Adel Asakereh, Behzad Kalantari, Masoud Dehghani,
Volume 15, Issue 1 (Spring 2021 2021)
Abstract

Introduction
The ring footings are very important and sensitive due to widespread use in various industries such as oil and gas; so finding some ways for improving the behavior of these types of footings can be very valuable. One of these ways, which is very affordable and also can be help in environmental protection, is the use of granulated rubber that made from disposable materials like scrape tires, as the soil reinforcement. In the present study, the behavior of ring footings with outer constant diameter of 300 mm and variable inner diameters (90, 120 and 150 mm with inner to outer diameter ratio of 0.3, 0.4 and 0.5) placed on unreinforced sand bed and also granulated rubber reinforced bed, has been investigated by field test. The effects of important parameters like inner to outer diameter ratio of ring footing and thickness of rubber-soil mixture on the behavior of ring footing in terms of bearing capacity, settlement and inside vertical stresses of footing bed have been studied and the optimum values mentioned parameters have been determined.
Material and methods
In all tests, a sandy soil was used to fill the test trench which was excavated in the natural bed of the earth with a length and width of 2000 mm and a height of 990 mm. It should be noted that the type of this soil is well-graded sand (SW) according to the Unified Classification System (ASTM D 2487-11). This sand had medium grain size, D50, of 2.35 mm, moisture content of 5.4% and friction angle of 41.7. The granulated rubber particles with dimensions between 2-20 mm, a mean particle size, D50, of 14 mm and a specific gravity, Gs, of 1.15, have been used in all tests for using in rubber-soil mixture layer.
The loading system consists of several parts such as loading frame for providing reaction force, hydraulic jack, load cell, load transfer system (including loading shaft which was located below Load cell and footing cap which was located under the loading shaft) and rigid steel loading plates with different inner to outer diameter ratios (d/D=0.3, 0.4 and 0.5 and constant outer diameter of 300 mm). Some devices like load cell, LVDT, pressure cell, data logger and unit control were applied to collect the data and control the system. Both soil and rubber-soil mixture layers were compacted by vibrating plate compactor to gain their maximum densities. After preparing the tests, the static load was applied on the system at a rate of 1 kPa per second until 1000 kPa or until backfill failure.
Results and discussion
The results of tests on both unreinforced and rubber reinforced beds indicated that the ring footing with inner to outer diameter ratio (d/D) of 0.4 had the maximum bearing capacity in all settlement levels. This behavior can be related to the arching phenomenon within the internal spaces of ring footing with optimum inner to outer diameter ratio. In fact, when the ring footing with optimum inner to outer diameter ratio is subjected to a certain level of loading, the soil inside the ring seems to be compacted due to interface effect of the two sides of the ring. However, by increasing the inner to outer diameter ratio more than its optimum value, the ring behaves like two independent strip footings without any interface effect and therefore the bearing capacity decreases.
The results of tests showed that the vertical inside stresses in different depths of footing bed (both unreinforced and rubber reinforced beds) decrease with increasing d/D ratio. This stress reduction process can be due to the transfer of stress concentration from the points close to the center of the ring to the outer point because of turning from the ring mode with interface effect to the two independent strip footings that mentioned earlier.
The results of rubber reinforced cases illustrated that, regardless of the footing settlement level and also irrespective of d/D ratio, the bearing capacity of ring footing increases with increasing the thickness of rubber-soil mixture layer (hrs) up to the value equals 0.5 times the outer diameter of ring footing and further increase in this thickness more than mentioned optimum value (hrs/D=0.5) can decrease the bearing capacity. Even in some cases of reinforced base (hrs/D=1), the bearing capacity can be reduced to the value less than that of unreinforced cases. It can be due to high compressibility of rubber reinforced layers with higher thicknesses than optimum value.
It should be mentioned that the rubber reinforced layer can reduce the vertical inside stresses compared to unreinforced cases. It can be due to this fact that the rubber reinforced layer acts as a wide slab. Such that it can spread the applied loading over a wider area. Also rubber reinforced layer has high capacity of absorbing energy and therefore can decrease the vertical inside stresses.
Conclusion
In the present study the behavior of ring footing placed on rubber reinforced bed have been investigated by field test. The effect of different parameters such as inner to outer diameter ratio of ring footing and the thickness of rubber-soil mixture layer on the bearing capacity, settlement and vertical inside stresses of the footing bed were studied. The result indicates that:
- In both unreinforced and rubber reinforced bed, the ring footing with inner to outer diameter ratio (d/D) of 0.4 had the maximum bearing capacity, regardless of settlement level.
-The vertical inside stresses in different depths of footing bed decrease with increasing d/D ratio.
-The bearing capacity of ring footing increases with increasing the thickness of rubber-soil mixture layer (hrs) up to the optimum value equals 0.5 times the outer diameter of ring footing.
-The vertical stresses can be reduced by using rubber reinforced layer../files/site1/files/151/5.pdf
 
Naser Hafezi Moghaddas, Abolfazl Soltani,
Volume 15, Issue 2 (9-2021)
Abstract

Safety design of structures concerning surface faulting effects such as shear and differential subsidence are very costly and in some cases are impossible. Then the appropriate approach for encountering surface faulting is to determine a suitable fault-avoidance zone. In this study, firstly the theorem of avoidance fault zone is presented, and then the setback area from the fault zone of South Mashhad fault is proposed. Recent studies show that South Mashhad fault is a right-lateral strike-slip fault with a normal component that cut the Quaternary sediments. In this work, the average slip rate and estimated return period for South Mashhad fault are 0.59 mm/yr and 2930 years, respectively.  Accordingly, the proposed avoidance zones in the south (hanging-wall) and north (foot-wall) of the fault are 80 and 70 meters, respectively. Considering the avoidance zones, many residential and other important structures are located in the avoidance zone of the South Mashhad fault../files/site1/files/152/%D8%AD%D8%A7%D9%81%D8%B8%DB%8C.pdf
 

 

Page 6 from 8     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb