Search published articles


Showing 154 results for gh

Afsaneh Ahmadpour, Abolghasem Kamkar Rouhani, Reza Ahmadi,
Volume 12, Issue 4 (Vol. 12, No. 4 2018)
Abstract

Introduction
     Ground-penetrating radar (GPR) method is a pretty new, non-destructive and high-resolution geophysical method that is widely used to identify the thickness of snow and ice layers and glaciers bed, because snow and ice are transparent for electromagnetic (EM) waves. Therefore, this method has been used to determine the thickness and basement topography of Alam-kooh glacier. In this research, only the GPR acquired data using unshielded antenna with central frequency of 25 MHz along one line in Alam-kuh glacier, Kelardasht- Mazandaran, have been processed and interpreted. The GPR data acquisition has been done by using common offset method, and transmitter-receiver separation of 6 meters. The final real radargram related to one of the surveyed GPR profiles in this region has been prepared after applying various processing operations containing signal saturation correction, amplitude gain, f-k migration filtering and static (topography) correction on the raw data. After applying processing sequences on the acquired data, the EM waves reflection off the interfaces of different layers including the reflections from the glacier basement have been detected, and by assigning a suitable EM wave velocity in the ice (0.16 m/ns), the thickness of 50 m for the ice layer laid under the survey line has been estimated. Also, in present research, forward and inverse modeling of GPR data have been performed to employ for snow, ice and glaciological investigations in the AlamKooh region of Mazandaran. To achieve this goal, GPR response of synthetic model corresponding to the real radargram was simulated first, by 2-D finite-difference time domain (FDTD) method. Afterward the inversion method by solving an optimization problem was employed to validate the interpretation of real GPR data.
Methodology and Approaches
     Based on the nature, physical and geometric properties of the subsurface target in the field data, their synthetic model have been built and their two-dimensional GPR responses forward modeling using ReflexW software and finite difference algorithms improved in the frequency domain, have been obtained. Also, it has been used an effective algorithm, coded in GUI environment of MATLAB programming software and as a result, a reliable and accurate inverse modeling has been carried out. In the present study, to simulate the behavior of the propagation of EM waves in GPR method, two-dimensional finite difference method has been used. The main advantage of this method is its comparative simplicity of the concept, high accuracy and simple implementation for complex and arbitrary models as well as easily adjusting the antenna when applied. In this study, acquisition of GPR field data and synthetic data modeling have been carried out in TM mode. The radargrams of the GPR data have been demonstrated using ReflexW software after performing necessary processing sequences.
Results and Conclusions
     The obtained results reveal that moraine materials covering the surface of the area are mainly fine-grained granite. The bed-rock or basement in the area is also granite. The polarity representing ice-bed rock is clearly seen on the GPR profiles. The topography of the glacier basement has successfully been detectable using just by GPR method. The electrical resistive nature of the glacier has caused large penetration depth of GPR pulses in this research. Furthermore, the results of the research for presented profiles on the basis of forward and inverse modeling output of GPR data in comparison with real GPR radargrams in the region validated the accuracy of GPR investigations in the area. Although with a quick glance, the error obtained by the inverse modeling for real GPR data seems unexpected and unacceptable, absolutely the high rate of error depends on many factors influencing on the real earth models containing various limitations existing in all forward modeling algorithms and software packages, impossibility of making forward modeling exactly according to the real models (due to the complex nature of the ground), taking into account the homogeneity and uniform host environment and targets in the modeling process unlike the diversity, the presence of different types of noises and so on. Therefore, making a controlled geophysical test site and trying performance of inverse modeling algorithm for field GPR data in this site, as well as determining the important physical parameters such as dielectric permittivity and electrical conductivity by experimental method through sampling from different depths for complex geological environments are suggested../files/site1/files/124/1ahmadpur%DA%86%DA%A9%DB%8C%D8%AF%D9%87.pdf
Sadegh Rezaei, Asskar Janalizadeh Choobbasti,
Volume 12, Issue 4 (Vol. 12, No. 4 2018)
Abstract

Introduction
Every year, numerous casualties and a large deal of financial losses are experienced due to earthquake events. The losses incurred by an earthquake vary depending on local site effect. Some well-known examples include the earthquake in Caracas 1967, Mexico city 1985, Kalamata 1986, Loma Prieta 1989, Roodbar 1990, Bam 2003, Jammu and Kashmir 2005, Sichuan 2008 and Haiti 2010. Therefore, in order to conquer drastic effects of an earthquake, one should evaluate urban districts in terms of the local site effect. Various methods are available for the evaluation of site effect. One of the most common methods includes ambient noise survey. Today, this approach is being used as fast, applicable, cost-effective method. Ambient seismic noise are feeble ground motions with displacement amplitudes of about 0.1–1 μm and that can be detected by seismograph with high magnification. Many investigations have been conducted to determine the nature of ambient noise. One of the possible sources of ambient noise can be human activity, such as traffic, industrial noises and nature activity, such as wind, ocean waves. The Babol city is one of the largest cities in the north of Iran (Mazandaran province). It lies on alluvium beds in the region presenting a high seismic potential. Therefore, comprehensive studies are necessary to introduce suitable solutions for minimizing earthquake damage and loss of life. For this reason, in Babol city, ambient noise survey has been performed at 60 stations and the obtained data were analyzed with Nakamura or H/V method (1989). The results were compared with local geological, geotechnical and seismic data to confirm their reliability for a seismo-stratigraphic.
Methodology and data collection
The analysis of ambient noise was initially proposed by Kanai and Takana (1961). Since then, many researchers have used ambient noise for site effect evaluation. As it is said before, one of the most popular techniques for estimation of site effects in the regions with low seismicity is ambient noise survey by Nakamura or H/V method (1989). Based on the literature review, the Nakamura method (1989) has been used in many places. Many theoretical and experimental studies show that, this method has the capability of estimation of fundamental frequency. Ambient noise survey was carried out at 60 stations in Babol city. Ambient noise was recorded using a velocity meter SARA. Two horizontal and a vertical components of ambient noise at each location are recorded for duration of 15 min with 100 samples per second. Because the environmental noise has an effect on ambient noise they are recoded between 10 p.m. to 6 a.m. The locations were determined by using GPS at the sites. The ambient noise survey in this study was made in compliance with the guidelines of SESAME (2004).
Results and discussion
The maximum and minimum values of fundamental frequency of the present research are 11.4 and 0.65 Hz, respectively. Also, the maximum and minimum values of amplitude of H/V peaks have been calculated as 3.71 and 1.19, respectively. The most significant point is that the fundamental frequency of the major part of Babol city is smaller than 1 Hz in agreement with the previous knowledge of the city geological setting. Another relevant point is the presence of some stations with very high (> 5 Hz) fundamental frequencies. In these cases, ambient noise recording and data analysis were repeated, but similar results were obtained. Considering the lack of sufficient geotechnical data (in some stations), the above phenomena need to be integrated with other methods. For this purpose, the data of electrical resistivity tomography (ERT) were used. The ERT showed that small regions of the north-west, west, and south areas have high resistance values probably related with the presence of hard deposits in the shallow subsoil. Babolrood river diversion in the west part and its return to the previous direction in the northern section is possibly due to the existence of these relatively hard deposits. By comparing these two tests, we observed that the ERT results correlate with the ambient data analysis. Therefore, we can conclude that the high-frequency peaks measured are reliable, but we need direct investigation to associate them to a specific shallow geological layer. To validate the results, fundamental frequencies obtained from ambient noise survey were compared with geotechnical data, numerical analysis and seismic data in the study area. A general review shows that the geotechnical data, equivalent-linear analysis results and seismic data have an acceptable conformity with the results of ambient noise survey.
Conclusion
The results show minimum and maximum fundamental frequencies 0.65 and 11.4 Hz, respectively. Assessment also reveals that the major parts of Babol city have the fundamental frequencies less than 1 Hz, which are in conformity with that of previous research. According to the results of seven cross sections, it can be concluded that fundamental frequency variations are in line with the geotechnical and geological data in the study area. It means that this method is the appropriate way to assess the local site effect in the Babol city. It is also observed that besides the soil layers, the soil stiffness and its shear wave velocity are effective factors in changing the fundamental frequency. Site frequencies were also estimated by preliminary 1-D site modeling using the equivalent-linear method. In general, a reasonable correspondence between the methods was obtained. Using seismic data, the HVSR of two strong ground motions have been calculated and the results have been compared with the nearest ambient noise recording station. Analyzing the spectral ratios demonstrates that the value of the fundamental frequency obtained by the H/V method (1.06 Hz) is very close to that of frequencies obtained by the seismic data (0.95 and 0.90 Hz)../files/site1/files/124/6rezaee%DA%86%DA%A9%DB%8C%D8%AF%D9%87.pdf
Prof. Seyed Amirodin Sadrnejad, Dr. Hasan Ghasemzadeh, Mr. Ahmadali Khodaei Ardabili,
Volume 12, Issue 5 (English article specials 2018)
Abstract

In a perforated well, fluids enter the wellbore through arrays of perforation tunnels. These perforations are typically distributed in a helical pattern around the wellbore. Available numerical models to simulate production flow into cased-and-perforated vertical wells have complicated boundary conditions or suffer from high computational costs. This paper presents a simple and at the same time efficient finite element model to simulate flow around a well with helically symmetric perforations. In the proposed model, by taking advantage of the symmetry, only a thickness of perforated interval containing a single perforation tunnel needs to be meshed. Angular phasing between adjacent perforations is considered by applying periodic boundary conditions on the upper and lower boundaries of the representative reservoir thickness. These boundary conditions involve periodic-pressure and periodic-velocity parts. Unlike the periodic-pressure part, the method of imposing the periodic-velocity condition within a single-variable flow problem is rather vague. In this regard, it is proved that in the proposed model, periodic-velocity condition is automatically satisfied in a weak sense. The accuracy and the computational efficiency of the proposed model are verified through comparison with available models. The model results, in terms of skin factor, are compared with the common semi-analytical model as well, and good agreement is obtained. The proposed model can readily be used as a numerical tool to study inflow of wells with helically symmetric perforations.
 


Milad Masomi Aghdam, Mehdi Hosseini,
Volume 12, Issue 5 (English article specials 2018)
Abstract

In the mechanized boring method, the factors affecting ground surface settlement can be mainly divided into five categories: geometric, geomechanic, boring machines working, operating and management parameters. In urban tunnels bored mainly in shallow soil bed, face pressure can be one of the factors preventing ground settlement. The Line A tunnel in Qom metro project is bored with an EPB (Earth Balance Pressure) mechanized boring machine. The effect of face pressure on ground surface settlement was analyzed in the present study according to five sections of the tunnel. These five sections were selected in different kilometers of the tunnel where settlement gauges were installed and the results could be validated. To investigate the effect of face pressure on maximum ground surface settlement, four pressure levels of 100 kPa, 150 kPa, 200 kPa, and 400 kPa were taken into consideration. These were 1, 1.5, 2, and 4 times of the initial face pressure level, respectively. The ground surface settlement was assessed at four pressure levels using the finite element software, PLAXIS 3D TUNNEL. The results were validated using ground-level instrumentation (settlement gauges) on all sections. The validation showed that the modeling results are in good agreement with the results obtained from settlement gauges.  Comparison of the results indicated that a 4-fold increase in the face pressure led to a maximum decrease of 4.45 mm in the maximum settlement. Therefore, an increase in the face pressure can reduce settlement, although quite minimally. It was also found that an over-increased face pressure (face pressure over 200kPa) not only did not reduce the maximum ground surface settlement but also may lead to passive failure or uplift of ground surface ahead of the shield. 
 
Kazem Saber Chenari, Abolareza Bahremand1, Vahed Berdi Sheikh, Chooghi Bairam Komaki,
Volume 13, Issue 1 (Vol. 13, No. 1 2019)
Abstract

Introduction
One of the main problems in the Golestan province watersheds is the high degree of erosion and soil degradation, so that the equilibrium between the soil process and the soil erosion is unbalanced, and the erosion rate increases from west to east. Among these, the gully erosion and piping have the highest role. Gully is a canal or stream with the headcut with active erosion, sharpened slope and steep walls that results from the destruction of surface flow (usually during or after the occurrence of precipitation), dissolution movements, and small mass movements. The extent of gully in the eastern parts of Golestan province has caused the land degradation of arable land and landscape and has increased the conservation cost and etc. Because of connecting upstream areas of the basin to the downstream areas, gully has particular importance, which provides the possibility of sediment and pollutant transport, road destruction and financial losses to agricultural lands. In order to prevent and control the development of gully processes from a small scale to large one, it is a versatile utility to identify and extract the areas prone to gully erosion.
Due to the high intensity of gully erosion and its increasing growth in the Gharnaveh watershed, the Garnaveh River has an unstable status and severe eroded gully, and in some areas it has a great depth and vertical lateral walls, as well. Therefore, in this research, the watershed of Garnaveh was selected to prepare the risk areas of gully erosion.
The aim of this research is to determine Gully Erosion Hazard zoning using Frequency Ratio and Gupta & Joshi methods (Gully Nominal Risk Factor-GNRF) in the Garnaveh watershed (Golestan province). Ultimately, the accuracy of the model has been evaluated using quality sum method and Kappa coefficient.
Material and methods
The study area is located in the northern part of Iran, Golestan province. The Garnaveh watershed with an area of about 78430 hectares lies between longitudes 370360 E and 414472 E, and latitudes of 4183819 N and 4155267 N (UTM Zone 40).
At first, gully erosion inventory map with the scale of 1:75,000 (dependent variable) for the Gharnaveh watershed has been prepared using multiple field surveys and satellite images. From total gullies, 70% have been selected randomly for building gully erosion hazard zoning model and the remaining ones (30%) have been used to validate the provided model.
In this research, seven data layers including slope percent, slope aspect, plan curvature, lithology formation, land use types, distance from rivers and distance from roads have been selected as gully erosion controlling factors (covariates/ independent variables) and then they have been digitized in ArcGIS software. The amount of Gully density of each factor class has been calculated from a combination of independent and dependent variables, and the rating of classes have done based on Frequency Ratio and Gully Nominal Risk Factor equations. Finally, the Gully erosion hazard zoning map has been drawn from the summation of weighting maps in ArcGIS. In this map, the value of each pixel is calculated by summing the weights of all the factors in that pixel. The pixel values are categorized based on the natural breaks classifier into very low, low, medium, high and very high hazard zones. Then, an accuracy of zoning map has been evaluated by quality sum method and Kappa coefficient.
Results and discussion
The result of affecting factors classification of the gullies shows that loess deposits formation, rangeland, areas with low distance from road and rivers, northwest aspect, low slope amplitude and concave slopes contain the most susceptibility to gullying. The results of frequency percent comparison of gullies in hazard classes show that from all gully zones in the validation step of the GNRF and frequency ratio models %74.52 and %78.11 of zones are located in the high and very high risk classes, respectively. The result of model validation using the quality sum method and a Kappa coefficient show that the frequency ratio model is a more appropriate model for gully erosion hazard zoning (with the quality sum and a Kappa coefficient of 3 and 0.89, respectively) than the GNRF model (having the quality sum and Kappa coefficient of 1.27 and 0.74, respectively).
Conclusion
In this research, the areas susceptible to gully erosion in the Gharnaveh watershed have been mapped with the frequency ratio and GNRF (for the first time) models. For this purpose, 7 affecting factors (independent variable) and 805 gully zones (dependent variable) were provided to measure the hazard maps of gully erosion. The following results are obtained from this study.
- The geology factors were identified as the most effective factors in the occurrence of gully erosion in the Gharnaveh watershed.
- Based on the gully erosion zoning hazard map of the Gharnaveh watershed, more than 70 percent of gullies are situated in the very high and high hazard classes.
- The produced gully erosion hazard map is useful for planners and engineers to reorganize the areas susceptible to gully erosion hazard, and offers appropriate methods for hazard reduction and management, as well../files/site1/files/131/4Extended_Abstract.pdf
 
Iman Aghamolaie, Gholamreza Lashkaripour, Mohammads Ghfoori, Naser Hafezimoghadas,
Volume 13, Issue 1 (Vol. 13, No. 1 2019)
Abstract

Introduction
The problematic collapsible soils are deposits with wind origin that constitute about 10% of the total area of ​​the earth. Several countries, including China, Russia, the United States, France, Germany, New Zealand, and Argentina have vast areas of collapsible soils. These deposits usually form a semi-stable honeycomb structure and are highly susceptible to sudden changes in the volume reduction due to becoming humid. Collapsibility and other related issues such as different subsidences, land cracks and landfalls seriously damage the infrastructures constructed on these soils.
 By the growing rate of urbanization in different parts of the world, the probability of construction on these soils and consequently water availability for these soils will increase; as a result, humidity increases and the collapse of these soils may occur. Therefore, studying the behavior of these types of soils is very important. Over the past six decades, many researchers have studied the collapse mechanism of collapsible soils due to becoming humid. Discussions on this subject are summarized in three categories: traditional methods, soil structure studies, and soil mechanics-based methods. In the present work, collapsibility and its controlling factors in the soils of Kerman city are investigated.
 
Material and methods
To determine engineering properties of Kerman deposits in this research, the geotechnical information was gathered and 50 core samples were extracted from different parts of the city. The sampling points were selected such that they could have a high overlap. X-ray diffraction (XRD) was applied to determine the mineral type and soil structures while scanning electron microscopy (SEM) was used to study grain arrangement.
Results and discussion
Geotechnical characteristics of the samples collected from Kerman plain deposits include their physical and mechanical properties. Based on the obtained results, this fine-grained sediment generally includes two CL and CL-ML groups. The mineralogy studies of Kerman city soils show that the minerals in these deposits are mainly illite, chlorite, illite-smectite, calcite, quartz, and gypsum. In order to study the collapsibility level of the soils in Kerman through the field studies, samples were taken from different parts of the city and the tests were carried out to determine the physical properties, collapsibility index, and structural studies. Through the SEM analyses, samples related to Haft Bagh area, Motahhari Town, and Pedar Town revealed an open structure and intergranular pores and thus a high level of collapsibility. On the other hand, in the majority of samples taken from the central part of the city, such as Esteghlal Street, Azadi Square, Bahmaniyar Street, and Hafez Street, the soil aggregates generally have corner-to-corner connectivity, with no specific order in their structure, and the arrangement of the particles is random and irregular. The orientation of the particles mostly shows no sharp pattern. In addition to soil particles, they have shown random and disorientated cavities with small sizes, suggesting the density and compactness of the soil indicating a low to moderate collapsibility. In some areas (e.g., Pedar Township and Motahhari Township), crystalline salt and gypsum crystals are clearly seen. It is expected that by increasing the amount of water, these salts dissolve and their effects can be observed as dissolution cavities.
 The dissolution of soluble crystals can also reduce the strength of the soil structure and ultimately lead to soil degradation. Calcite crystals are also found in some places in the form of calcite cement among the grains, sometimes as single crystals, and sometimes as lime nodules within the soils of Kerman city. Among the stated criteria in this research, Denisov, Holtz, and Hill criteria, the Russian regulations and ASTM standards were employed to assess the potential of the studied soil collapsing. Based on the criterion of the construction regulations of Russia, it was found that the deposits of the city of Kerman are mainly collapsible (L>-0.1).                     
Moreover, based on the Denisov criterion (if e/eL>1.5 the soil is non-collapsible, if it is between 0.75 and 1.5, the soil is prone to collapsing, and if it is between 0.5 and 0.75, the soil is severely collapsible), soils of Kerman are within the range of collapse-prone soils. Finally, based on the ASTM criterion, in some areas of the city like Motahhari Town, Pedar Town, and Haft bagh, soils show a high collapsibility. In comparison, in the central parts of the city, the values of this criterion vary between 0.15 and 11, suggesting the presence of soils with a moderate collapsibility. Comparing the results obtained using these criteria it is seen that areas with a collapsible behavior are relatively similar collapsibility results are obtained.
Conclusion
Based on the achieved results, fine-grained sediments of Kerman city are mainly composed of CL and CL-ML groups. Mineralogy results indicate that the minerals in these deposits are mainly illite, chlorite, illite-smectite, calcite, quartz, and gypsum. SEM results for the central part of Kerman city confirm the compressed and densely compact form of soil particles. The results obtained, using the construction regulations of Russia show that the soils in the study area are collapsible. According to the Denisov criterion, they were found to be prone to collapse. Finally, based on the ASTM results for the central parts of the city, soils exhibit a low to moderate collapsibility. However, in some areas of the city, such as Motahhari and Haft bagh, soils show a complete collapsibility behavior../files/site1/files/131/1Extended_Abstract.pdf
 
Mohammad Moghadas, Ali Raeesi Estabragh, Amin Soltani,
Volume 13, Issue 1 (Vol. 13, No. 1 2019)
Abstract

Introduction
Improving the mechanical behavior of clay soil by stabilization agents is a mean of fulfilling geotechnical design criteria. The method of stabilization can be divided into chemical, mechanical, or a combination of both methods. Chemical stabilization is performed by adding chemical agents such as cement, lime or fly ash to the soil (Bahar et al., 2004). Soil reinforcement is one of the mechanical methods that is used for improving the behavior of soils (Tang et al., 2007). Reinforcement of soil achieved by either inclusion of strips, bars, grids and etc. within a soil mass in a preferred direction or mixing discrete fibers randomly with a soil mass.
Mixing of cement with soil is made a production that is called soil-cement and results in chemical reaction between soil, cement, and water. The compressive strength of soil-cement is increased by increasing the cement content and this leads to brittle behavior or sudden failure. On the other hand, by increasing the cement to soil ratio for cohesive soils, shrinkage micro-cracks may develop in the soil as a result of the loss of water content during drying or hydration of cement. Therefore, if the tensile strength of these materials is not sufficient cracks will develop under loading and damage will be resulted (Khattak and Alrashidi, 2006). Consoli et al. (2003) and Tang et al. (2007) indicated that adding the fiber to soil can prevent from occurrence of these cracks and increases the tensile strength of the soil.
The focus of this paper is on the statistical analysis of the results and development of regression models. Regression relationships are developed based on the experimental results that were presented by Estabragh et al. (2017). These relationships relate the compressive and tensile strengths of the soil to percent of used fiber, cement and curing time.
Material and methods of testing
Unconfined compression and tensile strength tests were carried on unreinforced and reinforced soil, soil cement according to ASTM standards. Samples of soil-cement were made by mixing a clay soil and two different weight percent of cement (8 and 10%). Reinforced soil samples were also prepared by mixing 0.5 and 1 weight percent of Polypropylene fibers with 10, 15, 20 and 25 mm lengths. The dry unit weight and water content of prepared samples were the same as optimum water content and maximum dry unit weight that were resulted from standard compaction test. The compressive and tensile strength tests were conducted on the samples by considering the curing time according to ASTM standards until the failure of the sample is achieved.
Results and discussion
The experimental tests showed that reinforcement of the soil and soil cement increase the peak compressive and tensile strength. The peak compressive strength of reinforced soil is increased by increasing the fiber content at a constant length of the fiber. It can be said that by increasing the percent of fiber, the number of fibers in the sample is increased and contact between soil particle and fibers is increased which result in increase in the strength (Maher 1994). However, by increasing the length of the constant fiber inclusion there will be no significant increase in strength because the number of shorter fiber is more than longer fiber in a specific sample (Ahmad et al., 2010). Inclusion of fibers can greatly increase the tensile strength of clay soil. In addition to reinforcement of soil cement showed the same trend. When fiber is added to soil cement, the surface of fiber adheres to the hydration products of cement and some clay particle. Therefore, this combination increases the efficiency of load transfer from the composition to the fibers which increase the peak strength (Tang et al., 2007). In addition, the tensile strength shows the same trend.
Based on the experimental data on the behavior of a randomly reinforced clay soil and soil cement multiple regression models (linear and non-linear) were developed for calculating the peak compressive and tensile strength (dependent variables) based on the value of the coefficient of determination (R2). The proposed regression models were functions of independent variables including weight percent of fiber, length of fiber (length/diameter of fiber), weight percent of cement, and curing time. Finally, the comparison is made between the predicted results from proposed models and experimental results. In order to investigate the model accuracy, the Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (NRMSE) are used.
 The Multiple Linear Regression models (MLR) was very suitable for the study of the effect of independent variables on the quantitative analytic dependent variable. The NRSME for peak compressive and tensile strength is was 3.59% and 5.11% respectively for these models. Also, the Multiple Nonlinear Regression models (MNLR) had a much lower error than the linear model because of the quadratic equation, the equation will be able to predict the increase and decrease of the output variable in terms of the increase of the independent input variable. Therefore, The NRMSE for peak compressive and tensile strength was 1.02% and 4.04% for MNLR models respectively.
Conclusion
The following conclusions can be drawn from this study:
- The strength of reinforced soil and soil cement is increased by increasing the fiber content.
- Increasing the length of the fibers in the soil and soil cement has no significant effect on increasing the peak compressive strength, but it will be effective in increasing the tensile strength.
- The Multiple Nonlinear Regression models (MNLR) have more accuracy for prediction of output variable (peak strength) because of lower normalized root mean square error../files/site1/files/131/7Extended_Abstract.pdf


 
Seyed Taha Tabatabaei Aghda, Ali Ghanbari, Gholamhosein Tavakoli Mehrjardi,
Volume 13, Issue 2 (Vol. 13, No. 2 2019)
Abstract

Introduction
In some ports, the dredging and accumulation of a large amount of sedimentary material turned to a serious challenge, because of their sequent environmental and economic effects. These problems clarify the necessity of reusing dredged materials. Often, owing to their poor mechanical properties, they are not applied directly in technically engineering uses, so they require to be improved. Geocell application is one of the methods used for the improvement of soil behavior, which confines the sand mass through itself in the three-dimensional structure. These methods ease the speed of applying emerged it into a perfect option for stabilizing of the granular soil.
 In Shahid Rajaee port, by the dredging process for developing new phases, a large amount of calcareous sand is being accumulated near the Persian Gulf coastline. Therefore, in order to provide a solution to reuse these materials, this study attempts to investigate the beneficial influence of reinforcing sand by geocell on its load-beneficial behavior experimented by the plat loading test. For this purpose, a large scale model including circular foundation on reinforced and unreinforced sand has been employed under cyclic loading process.
Material and Methods
Soils
Two types of soils were used in this study. The first type was the sand derived from the dredging process of Shahid Rajaee port which has been used in different layers of the models. The second type of soil was well-graded gravel which has been used only in the cover layer.
Geocell
The geocell in this study were made of heat-bonded non-woven polypropylene geotextiles. Single cells were 110 mm long, 100 mm wide and 100 mm height.
Plate load test
In order to determine the bearing capacity of backfills, repeating plate load test was used with 150 mm diameter. Loading process included four stress levels (250, 500, 750 and 1000 kPa) consisting of 10 cycles each.
Test backfills
Four backfills was made by manually compacting the dredged sand, with tamper up to 350 mm in reinforced cases and 450 mm in unreinforced cases. Then geocells placed and dredged sand filled with accuracy in cells. Finally, a 50 mm thick sand or gravel cover layer, was placed. All lifts were compacted to 70% of relative density with 4% moisture content.
Results and Discussion
PLT results are summarized in Table 1. According to the results, only geocell reinforcement backfills can carry standard truck wheel load (550 kPa). Geocell can increase the ultimate strength of backfills with a sand cover layer by 70% (from 416 kPa to 725 kPa) while in backfill with a gravel cover layer showed 80% increase (from 520 kPa to 960 kPa) in ultimate strength. The gravel cover layer in unreinforced backfills increases the ultimate strength by 25 percent (from 416 kPa to 520 kPa).
Table 1. Results of PLT and performance ratings
Backfill name UR-S GR-S UR-W GR-W
Maximum stress (kPa) 416 725 520 960
Settlement at failure (mm) 4.6 9.0 15.5 14.9
Plastic settlement (mm) 3.5 7.0 12.5 12.0
Number of load cycles 10 20 20 30
Bearing capacity ratio (BCR) 1 1.74 1.25 2.32
Performance rating 4 2 3 1
Base on Table 1, bearing capacity ratio (BCR) has been increased up to 2.3 and has best when geocell reinforcement and gravel cover layer were used together. Geocell utilization as reinforcement for sand backfills, improves the stress-settlement behavior. Dredged sand can be used as backfill material for yards and access roads when reinforced with geocell and covered with a layer of well-graded gravel../files/site1/files/132/3Extended_Abstracts.pdf
Vahed Ghiasi, Mobin Moradi,
Volume 13, Issue 2 (Vol. 13, No. 2 2019)
Abstract

Introduction
Raft foundations are generally used to support buildings and structures, with or without basements, in dry or high ground water table conditions. When the shallow subsoil conditions are unfavorable (unsafe bearing capacity or excessive settlements) then load bearing piles can be used for transferring the total loads to more competent soil layers. In many cases, the maximum and differential settlements are the controlling factors to the selection of composite foundations systems including piles and raft. The piled raft foundation contains three elements of load-bearing; namely piles, raft and the underlying soil mass. Matching their relative stiffness, raft foundation distributes the whole load is transferred from the superstructure to the top soil and the connected piles. In foundation design, the idea of combining mat foundation and deep foundations as a new option in the topic of foundation engineering has been raised in recent years. The use of deep foundations under mat foundations (Piled-raft Foundation) can leads to reduce the settlement and the effect of bearing capacity. In conventional design of piled foundations, it was usually postulated that the overall load is supported by the piles. In composite foundation systems, raft contribution is taken to confirm the bearing capacity in ultimate moment and the serviceability of all over system.
Material and methods
Composite piled-raft foundations including pile and raft have been considered in this research. Knowing the performance of composite piled raft systems is important because of the fact that the decreasing role of differential settlement and piles plays the role of supporting the underlying soil and increasing the load bearing capacity of the soil. A case study has been used to analyzing the performance of piles and shallow foundation systems in this study. For this purpose, the finite element PLAXIS 3D foundation software is used to analyze the foundation deformation. Raft foundation with a thickness of 0.3m and dimensions of 6 × 6m, which is located on a uniform sandy soil mass, and depth of raft from the soil surface is 2 m. Piles with a circular section of length 10 m, a thickness of 0.5 m and with 9 numbers below and within soil are located. Groundwater level is not considered, which actually indicates that the water level is outside of the 25m thick layer of the sand. In this research, deformation of foundation, moment applied on foundation and also the contribution of piles in the bearing of combined system under static loading in sandy soil for the various of pile lengths 7m to 13m and different thickness of raft 0.3m to 1m in the piled-raft foundations regarding connection of raft and piles, has been analyzed.
Results and discussion
The obtained results indicate that the first to third layouts in the optimal system where the central piles are longer, the settlement has had a maximum decline. A comparison of the default composite system with a 10 meter pile length and an optimal proposed system illustrates that the optimal system in the first and fourth layouts reduces differential settlement of raft in relation to the default system. Applying variations in pile lengths the optimal system has led to a reduction in the amount of bending moment applied to the raft in all layouts. Composite systems with the first, second and third layout, optimize system utilization effect on increasing the share of piles bearing. But in the fourth, with the optimum layout of the composite piled-raft system share of piles bearing to the total load on the same analogy in the basic system, the less value has been raised this argument that the position of the scattered placement of piles are the reason for this issue. The raft thickness of the composite system is another parameter whose performance has been measured against the raft settlement. With the increase in the maximum amount of raft thickness increases the settlement which of course this increasing is small and very different thickness is not notable. By increasing the raft thickness, reducing the differential settlement is sensible but the major settlement reduction in the thickness of 0.3m to 0.5m has been occurred. With increasing the raft thickness the value of the moment has been increased. This moment increasing in the piled-raft system with disconnected piles over other systems in the primary thickness, moment is created about 60 kN and the raft thickness 1m, this moment value has reached more than 100 kN, as well as, by increasing the raft thicknesses, the amount of load share of the piles to the total load increased, significantly.
Conclusion
The following conclusions were drawn from this research.
-Use a long piles in the center and the shorter piles about the raft reduce the maximum settlement, differential settlement and significant reduction of the raft foundation moment, and beside these, piles bearing the composite piled-raft system is increased.
By increasing the raft thickness increases the maximum settlement, mean settlement, bending moment of raft has been increased. The positive effects of increasing the thickness of raft foundation is reducing the differential settlements and increasing the pile contributions in the bearing. This result has been expected due to increasing the raft mass and rigidity.
-The combined piled-raft system utilizes connected and disconnected piles to the raft and detached from it simultaneously to improve the expected indices../files/site1/files/132/4Extended_Abstracts.pdf
 
Kazem Bahrami1, Seyed Mahmoud Fatemi Aghda, Ali Noorzad, Mehdi Talkhablou,
Volume 13, Issue 2 (Vol. 13, No. 2 2019)
Abstract

Aggregates are one of the high demand building materials in construction of structures and their characteristics have important effects on durability and permanence of projects. Abrasion resistance is one of the important features of aggregates that their utilization in concrete and asphalt are affected by texture and lithology of them. As rock consisted of harder minerals have higher abrasion resistance like igneous rocks, due to more siliceous minerals. More varieties in mineralogy compound usually lead to increase in aggregate abrasion. Aggregates that are contained of different minerals usually have less abrasion resistance. Porosity usually decreases the resistance abrasion. In addition to lithological properties, the environment where aggregates are deposited is important in determining resistance-related parameters of aggregates.
Rivers, alluvial fans, and taluses are the main environments where aggregates are deposited. Geological processes, such as weathering and particle movement may cause changes in natural aggregates, hence affecting their abrasion and impact resistance. Rock weathering can results in increasing porosity, producing minerals that are weaker in comparison to their original rock.
In the process of particles transport by stream water, weak parts of aggregates will be omitted. The present study is focused on the relationship between geology medium and the weight loss of aggregate in Los Angeles test. 
Methodology
Considering that lithology features in aggregates resistance against abrasion have an important role, in order to examine the effect of various geology environments in abrasion resistance of aggregates, the medium should be chosen having similar lithology. Therefore, the north of Damavand and the south of Daneh Khoshk anticline (north of Dire plain) were firstly chosen by using geology map, satellites images and field study. Damavand zone consists of trachyte and trachy-andesite volcanic rocks. These rocks cover the whole area around the Damavand peak. Also, Daneh Khoshk anticline is covered by thick Asmari formation. The selected environment are in the length of each other. Such that taluses feed alluvial fan and alluvial fans feed rivers. Samples were collected from different area of southern part of anticline. 10 river area, 12 alluvial fan and 6 taluses in the south-west area of Daneh Khoshk anticline (north of Dire plain) were chosen. Los Angeles test has been done according to standard A method ASTM D2216-10, 1990 on samples and the results were analyzed by analogous analyzer.
Results and discussion
Results show that porosity and micro-crack percentage increase, respectively in accumulated aggregate in river, alluvial fans and taluses areas. Also, porosity and micro-crack in various alluvial fans is different and is influenced by the area and length of main channel of alluvial fans’ catchment. The porosity decreases by the increase in the length of channel and area of alluvial fans’ catchment.
The percentages of aggregate weight loss in talus, alluvial fan and river areas decreases, respectively. Based on the obtained results, the lowest rates of weight loss belong to river environments (23.7 % in Daneh Khoshk and 42% in Damavand) whereas the highest rates of weight loss belong to taluses (49.3% in Daneh Khoshk and 48% in Damavand). The alluvial fans have an average state. Another noticeable point is the high weight loss in Los Angeles test in Damavand aggregate. Due to having harder mineral, igneous aggregate have more abrasion resistance, but this research illustrates that the weight loss resulting from Los Angeles test in these aggregates is high. This is because of virtues texture that weakness against the impact as well as their high porosity.
Conclusion
The result of this research indicates that the volume of aggregate weight loss in Los Angeles test is related to aggregate accumulation environment. The extent of aggregate abrasion resistance is lowest in talus medium and increases in alluvial fan and river environment, respectively. The difference in aggregate abrasion resistance in various areas result from geology process differences that applies to aggregates in various environment. The extent of caring particles in talus environment is very low and the type of movement is mass or sliding type in these media, micro-crack and weak parts remains within aggregates. The surface of micro crack is weak such that breaks easily in Los Angeles test due to the pressure results from the impact of aggregate, as well as the impact of steel ball on aggregate leading to aggregate breakages. Aggregates move more distances in alluvial fan and river. Aggregate strike together in riverbed and alluvial fan yielding to aggregates breakages from micro-cracks. As the movement distance increases, aggregates approach more to intact rock. During the particles move, the weathered and weak parts are damaged by aggregate abrasion to riverbeds and alluvial fan, and more resistant and harder aggregates remain. As the water current increases, the aggregates impact each other harder, more resistant micro-crack breakages and this change leads to decrease the weight loss in Los Angeles test.
./files/site1/files/132/1Extended_Abstracts.pdf
Saeed Mojeddifar, Nastaran Ostadmahdi Eragh,
Volume 13, Issue 2 (Vol. 13, No. 2 2019)
Abstract

Introduction
This work intends to apply ASTER images to discriminate hydrothermal alteration zones in Kerman Cenozoiic Magmatic Belt (KCMB). Band ratio, principal component analysis, Crosta and color composite images are important methods to analyze satellite images. Previous researches showed that these techniques are not able to discriminate hydrothermal alteration zones and they usually detect vegetation covering as alteration zones. The reason is found in the spectral signature of vegetation and alteration minerals. It means that they present the same interaction when face with electromagnetic energy in different wavelengths. Hydroxyl-bearing minerals are the important products of hydrothermal alteration. Clays, which contain Al-OH- and Mg-OH-bearing minerals and hydroxides in alteration zones, are distinguished by absorption bands in the 2.1–2.4 µm range of ASTER data. Solving these problems is difficult when using standard image-processing techniques such as band rationing, principal component analysis, or spectral angle mapper. In recent years, several attempts were made to extract altered regions in the areas covered with vegetation. To overcome this problem, this research uses ASTER data by applying support vector machine (SVM) algorithmn. SVM is a new technique for data classification in remote sensing application. This paper aims to investigate the potential of SVM algorithm in mapping of hydrothermally altered areas. In many applications, SVM has been shown to provide higher performance than traditional learning machines and has been introduced as powerful tools for solving classification problems. The adopted dataset contains three ASTER scenes using SWIR and VNIR bands, covering the Meiduk porphyry copper deposit, Kader, Abdar and Iju occurrences located in Kerman Province, southeast Iran.
Material and methods
This work has been prepared on three ASTER level 1B scenes. Two scenes were acquired on 18th April 2000 and another scenes on 15th June 2007. These scenes were georeferenced by using an orthorectified ETM +  image,  in  UTM projection and WGS-84 ellipsoid as a datum.  The first two data sets were corrected for Crosstalk. Atmospheric corrections were also performed by using Fast Line of Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH). The data sets were then mosaicked.­­ Internal Average Relative Reflectance (IARR) correction was also applied. In this part, the training and test samples of the ASTER data are presented. The adopted image is a multispectral satellite image that contains 2204 training pixels which 516 pixels are related to arjillic zone, 1278 pixels are related to phyllic zone and 500 pixels are pertinent to propylitic zone (Fig. 1).

Fig. 1. Training pixels for learning SVM algorithm; Red pixels: arjillic; Green pixels: phyllic; Blue pixels: propylitic
Results and discussion
ASTER bands 4, 6, 7 and 8 were applied for determination of phyllic and arjilic zones and 9 bands of ASTER for propylitic alteration. In order to evaluate the developed algorirhm, confusion matrix was used and validation showed that discrimination of phylic and arjilic is not possible but propylitic zone could be identified by SVM. Also, the present research introduced a new error function, so called blind error, which is calculated using confusion matrix. Based on blind error, SVM did not classify 73.6 percent of the alteration pixels. But the remained pixels were classified with accuracy of 66.06%. Honarmand et al. (2011) and Mojedifar et al. (2013) studied the field samples of the present study area. Their studies showed that sericitization is the most widespread form of hydrothermal alteration at the Iju, Serenu, Chahfiroozeh, Meiduk, Parkam, Kader and Abdar porphyry copper deposits. Two types of phyllic alteration could be found in the study area including ferric-iron-rich and iron-oxide poor phyllic alteration. ASTER images were also analyzed by band rationing and principal component analysis (PCA) in order to compare their results with the SVM classified image. A comparison of the field data with altered areas mapped by PCA reveals errors in the classified map. Vegetation cover and sedimentary rocks are enhanced, which are erroneously identified as areas of alteration. The band ratio approach yields similar errors to those produced by the PCA method. These problems are less evident in the classified image obtained by SVM. The qualitative assessment of the accuracy of these methods indicates that SVM algorithm could be a reliable technique for alteration mapping, provided that the nature of the training areas is well known.
Conclusion
A comparison of the results obtained from traditional classification methods and support vector machine algorithm was performed in order to map hydrothermal alteration. Since the known occurrence of mineralization in the study area is consistent with the mapped distribution of hydrothermal alteration using SVM, this method is suggested to apply in exploring for hydrothermal alteration in other parts of the Iranian Cenozoic magmatic belt../files/site1/files/132/6Extended_Abstracts.pdf
 
Erfan Naderi, Adel Asakereh, Masoud Dehghani,
Volume 13, Issue 2 (Vol. 13, No. 2 2019)
Abstract

Introduction
Bearing capacity is very important in geotechnical engineering, which depends on factors such as footing shape, stress distribution under footing and failure mechanism of soil. Construction of the footing near a slope affects the behavior of footing and reduces the bearing capacity. Also, construction of structures on soft soil usually involves problems such as excessive settlement, deformation and stability problems. In order to increase the bearing capacity, especially in soft soils, one method is adding stone columns to soils. In this method 15 to 35 percent of unsuitable soil volume is replaced with appropriate material. In this research, the bearing capacity and settlement of a strip footing on a clayey slope reinforced with stone columns is investigated. For this purpose, a series of small-scale model tests was performed on the slope reinforced with both types of ordinary and vertical encased stone columns. The effects of length of stone column and location of stone column on the behavior of footing was studied and the optimum length of column and best location for column were determined. Also, some tests were performed on the effect of group stone columns on the footing and the efficiency of columns was investigated.
Material and methods
In order to determine properties of clay soil, stone column and encasement material, some preliminary standard tests were performed. The stone column material was selected with aggregate size ranging from 2-10 mm considering the scale effect. The performance of stone column depends on the lateral confinement provided from the surrounding soil and this lateral confinement represents undrained shear strength of the soil. In very soft soils (cu<15 kPa), the lateral confinement is not adequate and the stone column cannot perform well in carrying the required bearing capacity. For this reason, a series of undrained shear strength standard tests were carried out on clay samples with different water contents. According to these tests, the amount of water content of clay related to cu-15kPa was equal to 25%; while the natural water content of the clay was 4%. Therefore, the additional amount of water was weighted and added to clay. The apparatus of this research was consisted of two main parts including a test box and a hydraulic loading system. The test box dimensions should be such that for all states of the tests, the stress in the soil applied from the loading would be almost zero at all boundaries of the box. Thus, a box was built to accommodate the clay slope with 150 cm×120 cm×30 cm dimensions. The test box was built using steel material and steel belts were welded around it to prevent the deformation at high loads. The front side of the box was made from two pieces of tempered glass and a 10 cm×10 cm grid was drawn on them, for making the slope during construction and observation of deformations during the loading easier. The model strip footing dimensions were 29 cm length, 10cm width and 4cm height and it was made from steel to have no deformation during the loading. The displacement of the footing was measured using two dial gauges with accuracy of 0.01 mm.
The clay was filled in the test box in 5 cm thick layers and compacted with a special 6.8 kg weight tamper. All model stone columns were constructed using the replacement method. In this method, a 10 cm diameter open ended steel pipe was inserted into the soil and the clay within the pipe was excavated. Then the stone column material charged into the hole in 5 cm layers and each layer was compacted using a 2.7 kg special circular steel tamper with 10 blows. The 5cm compactions were repeated until the construction of ordinary stone column was completed. For construction of vertical encased stone columns, the cylindrical encasement mesh should be constructed first. Then, after excavating the hole, the prepared encasement mesh was placed inside the hole and the aggregates were charged into the hole in 5 cm layers and compacted.
Results and discussion
The loading method used in all tests was a stress control method. Bearing capacity values were determined from pressure-displacement diagrams using tangent method. All test results show that when any type of stone columns was added to slope, the bearing capacity of adjacent footing was increased. Vertical encasing of stone columns leads to a further improvement in the behavior of the footing. Influence of length of ordinary stone columns on the behavior of strip footing near clayey slope, was studied for four different lengths. Results show that, the optimum length of stone columns giving the maximum performance is about 4 times their diameter. Also, the location of column for both ordinary and vertical encased stone columns was studied using a series of laboratory tests and results show that the best location for the stone column is right beneath the footing. Also, group stone column tests resulted that for both ordinary and vertical encased types of stone columns, the group of two columns had a better efficiency than the group of three columns.
Conclusion
In this investigation, some model tests with 1/10 model scale on a strip footing near a clayey slope reinforced with stone columns were performed and the effects of different parameters such as stone column length and location were studied. Based on results from experiments on different states of stone columns, the following concluding remarks may be mentioned:
- The maximum encasement influence was observed when the encased stone column is placed under the footing.
- The optimum length of ordinary stone columns which are placed beneath the strip footing gives the maximum performance more than 4 times to their diameter.
-Bulging failure mode governs when the stone column is placed under the footing. When stone column is not beneath the footing, the failure mode was lateral deformation.
- Comparing the different locations of stone columns in the slope shows that for both ordinary and vertical encased stone columns, the best location having the most influence on the strip footing is under the footing and with increasing the spacing between column and footing, the bearing capacity is reduced.
./files/site1/files/132/7Extended_Abstracts.pdf
Fahimeh Salehi Moteahd, Naser Hafezi Moghaddas, Golamreza Lashkaripour3, Maryam Dehghani4,
Volume 13, Issue 3 (Vol. 13, No. 3 2019)
Abstract

Introduction
Mashhad city, the second largest metropolis of Iran, is located in an arid and semi-arid region. Overexploitation of groundwater in Mashhad plain has caused up to 22.5-meter drop in the groundwater level from 1984 to 2013. The groundwater depletion in the unconsolidated aquifer has resulted in subsidence and cracks on the land surface. To determine the land subsidence rate map and the reasons for hot spot subsidence, the latest Envisat images of the ESA Space Agency's Archive for Mashhad plain were used. leveling and GPS data were combined with the radar interferometry results and the annual subsidence rate maps with high precision were obtained. Finally, the geology and soil texture maps of study area are compared to the land subsidence map.
Methods and results
To assess the land subsidence in Mashhad plain three methods of leveling, GPS and Insar are used. Leveling data are available in three profile of of Mashhad-Quchan (BCBD), Mashhad-Kalat (BDBE) and Mashhad-Sarakhs (BEBN) in two time interval of 1994-2003. The highest rates of subsidence in the BCBD, BDBE and BEBN lines are 7, 3.5 and 8.1 cm/year, respectively. Six permanent GPS stations have been installed in Mashhad plain, among them, NFRD, GOLM and TOUS have recorded the land subsidence, with the highest annual rate of 21.2 cm/year at TOUS Station. The third method applied to assess the history of land subsidence was InSAR radar interferometry which provided the extent and pattern of subsidence in all of the study area. For this, 23 images of the Envisat ASAR are processed during the 05/24/2010 to 06/30/2003 time period. The highest subsidence rate estimated by this method was 32 cm/year in the northwest of Mashhad. In general, two subsidence bowls, in the northwest and south east of Mashhad city are identified. Fig. 1 shows the annual subsidence rate map in Mashhad plain. Using the root-mean-square error (RMSE), the accuracy of the InSAR method was verified with GPS and leveling data.
Discussion
The rate and distribution of land subsidence in Mashhad plain are affected by geological factors such as soil texture, deposit thickness, geological structures and groundwater drawdown. The geological and geophysical studies and exploratory drilling results in the Mashhad Plain indicate that the bedrock morphology is very rough. The bedrock outcrops in some places while in some other places covered by more than 300 meters alluvial deposits. Generally, by distance from the mountain, alluvium thickness and as a result the likelihood of subsidence would be increased. Mashhad plain is surrounded by the active and quaternary faults in the north and south edges. In the north of Mashhad plain Marly bedrock is uplifted by Tous fault and outcropped in the north of fault. In the south of Mashhad two normal faults have resulted to the increase of alluvium thickness in south and central of Mashhad plain. The change of river pathway also let to deposition of a sequence of the fine-grained and coarse-grained soils in central of plain between Toos and southern branch of South Mashhad fault (F2).
used to draw the cross section
In order to evaluate the subsurface conditions and its effect on the land subsidence, the soil texture are studied using the deep water wells and piezometers log (Figure 2). Fig. 3 shows the longitudinal section (northwest to southeast) of the area. As it can be observed, the soil texture includes of alternation of fine and coarse grains layers (Figs. 4). In this condition, sandy soils help to shortening the drain path of clayey layers and leads to acceleration of the consolidation. The average rate of annual subsidence in the area is 14 cm for one meter of drop in the groundwater level.
Nowadays, in the urban area, due to the urban sewage waters, there is a rising of groundwater level.  Therefore, no land subsidence has occurred in the central parts of the city. It is expected by completion of urban sewage network about 62 million cubic meters of sewage water will be eliminated from the aquifer recharge, which will cause a notable drop in the groundwater level and prominent land subsidence in specific area of the city. Considering the geological conditions and the operation of the existing faults, it is expected that in the case of groundwater drop, no significant subsidence will occur in south of the F2 fault, due to the decrease in the alluvium thickness and to the coarse texture of the soil. But in the northern and northeastern parts of the city, which are located between F2 and the Tous faults, high rate of land subsidence is expected.
Figure 4: The cross section of soil texture and the annual average rate of land subsidence and groundwater level drop
Conclusions
Using the radar interferometry processing, the highest annual rate of subsidence in Mashhad plain is about 32 cm/year. Land subsidence in Mashhad plain has an increasing trend and the geological conditions have a critical role in the subsidence rate and its pattern. Generally, soil texture near the mountain area in South is coarse and grain size decreases toward the center of the plain. But because the outcrop of Marly formation in the north slopes, soil texture is mainly fine grains. In the center of Mashhad plain soil texture constituted of fine and coarse grains which are converted together as inter fingering facieses, which have a critical role in decreasing of the consolidation time and increasing the land subsidence rate. It is predicted by complimenting of the urban wastewater network, the groundwater level will be dropped in the city area and the northwest and southeast subsidence ellipsoids which already can be seen will be connected together. Therefore, the area between F2 and Toos faults, will be shown the highest rate of subsidence, due to high thickness and fine-grained soil texture../files/site1/files/133/5Extended_Abstracts.pdf
Ahmad Khorsandi Aghai,
Volume 13, Issue 3 (Vol. 13, No. 3 2019)
Abstract

In this research, the relationship and reaction between quantitative and qualitative Shahre Rye spring’s karstic water (Cheshme Ali) and spring’s adjacent alluvium aquifer have been considered to determine the relationship between alluvial and karstic aquifers and to study the connections between the two different groundwater environments. The results of the present research suggest geological conditions, hydrogeology and different hydraulic condition between Cheshme Ali karstic water with its surrounding alluvium’s aquifer. However the study results show the lack of a hydraulic connection between the two different groundwater environments (karst and alluvium) that are formed by north Rye fault.
Introduction
There have been many studies in the field of the present research, some of which are mentioned below.
(Tobarov, 1966). The N. Massei et al. (2002). (Robert E. 2005). (Ezatollah Raeisi 2008). (Cholami et al. 2008). (N. Goldscheider and C. Neukum 2010). (Dusan Polomcic et al. 2013).
The aim of this research is to identify the hydraulic relation between the alluvial aquifer and the karstic aquifer of the Cheshme Ali, during which the geographic, topographic and geologic situations and the changes in water discharge of Cheshme Ali and the changes in water table of the observation wells of the aquifer to the north of the spring have been reviewed simultaneously.
The results indicate a lack of relation between the alluvial aquifer and the karstic aquifer of the Cheshme Ali in Shahre Rye.
The general specification of the study area
The surface area of Shahre Rye equals to 2,293 km2 and the city is limited to the north by Tehran, to the south by Qom, to the east by Varamin and Pakdasht and to the west by Islamshahr, Robat Karim and Zarandieh (Fig. 1). The Cheshme Ali is located in the eastern parts of the city and southeast of Tehran. From a geographic point of view, the Cheshme Ali spring is situated in the southern part of the Cheshme Ali hill, and after leaving the ground, the spring's water flows to the south of Shahre Rye.
Methodology
1. Topography
The topographic specifications of the Cheshme Ali and its surrounding are as follows:
The highest points of the Cheshme Ali's surroundings are the Sepaye Hills with an altitude of 2,085 m above the sea, which are located to the east of Cheshme Ali. The height of Bibi Shahbanoo hill to the southeast of Cheshme Ali is about 1,498 m. The altitude of the northern hill of Cheshme Ali, where the spring is located is about 1,077 m and the lower sloped land surrounding it have an altitude of 1,072 m above the sea. This means that the opening of the Cheshme Ali spring is located at 1,072 m above the sea.
2. Geology
From the geological point of view, the existing units around Cheshme Ali of Shahre Rye consist of Precambrian, Mesozoic and Cenozoic sediments and rocks as geological specifications of Cheshme Ali and its surroundings are shown in Fig. 2.
From the structural geology, and geological specifications two geological sections AB, CD Were prepared and presented in Figure 3.
The Figure 3 shows, Cheshme Ali spring appears from Cretaceous thick layered limestone (Tizkooh formation Kt1) and the shahre Rye fault mechanism on either side of layering. However the water flow of cheshme Ali is nearly east – westerly after spring’s openings (A) and then spring water flow direction is to the south (Fig. 4).
The hydrogeology of the spring and the wells
1. The Cheshme Ali in Shahre Rye is a karstic spring, with few hydrogeological specifications that are concluded from the result of geological and hydrogeological review and analysis of the spring’s water quality.                                                           
Therefore, the karstic Cheshme Ali spring has a varied range of discharge which is from medium (25 to 100%) to high (>100%). Moreover in the curves of the spring’s discharge and simultaneous rainfall, shown in figure 5, the peak volume of water discharge of the spring corresponds fully with the peak rainfall, underlining the influence of simultaneous rainfall on the spring.                
The study of the hydrographic makeup of the spring (curve 2) shows the difference in the period between the upward curve (seven and a half months) and the downward curve (four and a half months) underlining the lower permeability of the spring’s intake area versus the grounds conducting spring water to the openings.
2. The hydrogeology of the surrounding wells:
For the purpose of studying the fluctuation of water tables of the observation wells around the spring and in its adjacent alluvial aquifer, the isobaths maps of groundwater level and groundwater table of the spring’s surrounding areas were drawn ( Fig.6). The level of groundwater table to the north of spring is 5.9 m and 6.6 m to the south of it, while the spring water is at ground level. In order to have a better understanding of the potentials of groundwater table in Shahre Rye’s Cheshme Ali and its surrounding environments from south to north, the potential profile is provided in figure 7 using the potential figures of witness wells and the Cheshme Ali spring. In the potential profile, the groundwater level of the Cheshme Ali is higher than the groundwater potential level of the witness wells, which seems to suggest the recharge of the plain by the spring.
The review of the groundwater quality in wells and the Cheshme Ali spring
The groundwater quality characters of the Cheshme Ali and the wells to the north and south of the spring are presented in table 2,that shows three differences and similarities in the results of the chemical analysis of water from Cheshme Ali and from wells located to the north and the south of the spring. The difference between the chemical composition of water from the spring and the chemical composition of the well located to the north is considerably more than the difference between the chemical compositions of the spring and the well located to the south.
Summary and conclusion
Based on the geological studies of this research, the Cheshme Ali spring in Shahre Rye appears from the Karstic Tizkooh formation (Fig. 2) and the geological structure shows a northerly direction for the slopes of the layers in Tizkooh formation, and an east-westerly direction for the appearance of the spring water (Fig. 3 and Fig. 9). The spring’s flow is disseminated and the spring is of Karstic - fault type (table 1). The discharge of Cheshme Ali corresponds entirely to rainfall and is influenced a lot by it (Fig. 5). The condition of groundwater table of the well and the spring (Fig. 6, A) and the water level potential of the spring and its surrounding wells underlines the existence of two different hydraulic environments (Fig. 6, B). Moreover, from the aspect of potential groundwater column, there is a large difference between the groundwater table potential of the spring and the potentials of the two wells to the north and south of the spring (Fig. 7and8). From a qualitative aspect, the quality of spring water differs greatly from the quality of water from the wells located to the north and south (table 2).
The results of this research are as follows:
1. The study of geologic, structural geology and the geological section shows the water in the Cheshme Ali of Shahre Rye is originating from the Karstic formation of Tizkooh that layers sloping are to the north, the spring water appears from the site of the Rye fault and then flows to the west.
2. The studies have proven that Cheshme Ali to be a Karstic – fault spring with disseminated flow, whose discharge is influenced by rainfall and condition of groundwater level and the table which underlines the alluvial aquifer shows lack of relation between two alluvial and karstic aquifers.
3. The water quality analyses show a great difference between the specifications of the spring water and its surrounding wells groundwater.
4- The north Rye fault mechanism are formed two different groundwater environment ( Karstic and alluvium) and however different groundwater conditions between north and south of alluvium.
Farzaneh Douzali Joushin, Kazem Badv, Mohsen Barin, Hossein Soltani Jigheh,
Volume 13, Issue 4 (Vol. 13, No. 4 2019)
Abstract

Introduction
The geotechnical engineering problems involving unsaturated soils are included water flow, shear strength and volume change. Soil-water characteristic curve (SWCC) describes the constitutive relationship between soil suction and soil water content. SWCC may be determined directly or indirectly in the laboratory. Because of the various difficulties involved in the direct measurements, a simple and economical laboratory method namely filter paper method is of considerable value. The filter paper method is a laboratory technique that has recently been accepted as a standard method of measuring soil potential, reaching far higher ranges of water potential in comparison to other techniques, and is based on the principle of moisture absorption by filter paper until there is a balance in potential between filter paper and soil.
This paper presents an experimental investigation performed to evaluate the soil water characteristic curves of dune sand stabilized with SBR polymer and MICP processes (Sporosarcina pasteurii bacteria with CaCl2 and urea) with contact filter paper method in the Jabal Kandi area.
Material and methods
The dune sand used in this study was obtained from the surface (0–10 cm depth) of Jabal kandi area, located on the south-west of Urmia Lake. SBR polymer is prepared from Paya Resin Company in Esfahan. In the MICP processes, S. pasteurii from Persian Type Culture Collection (PTCC 1645) was used as the urease positive bacterium. Cultivation of the microorganism was conducted in a medium containing 20 g l-1 yeast extract, 10 g l-1 NH4Cl at a pH value of 8. Sporsarcina pasteurii was grown to late exponential phase to final concentration of 1.5 g dry weight l-1 and urease activity of 2.2 mM urea min-1 under aerobic batch conditions. Broth cultures were incubated in a shaker incubator operated at 120 rpm. Cementation solution of MICP consisted of CaCl2 and urea. All experiments were performed at an ambient temperature of 25oC ± 2.
For the tests with Whatman No. 42 filter paper, three different soil samples were prepared (dune sand, dune sand stabilized with (5-10-15) % SBR polymer and dune sand stabilized with (5-10-15) % MICP process). Residual water content is 2.5% and the residual dry density is 15 kN/m3. The soil is mixed with the right quantity of water and placed in a sealed plastic bag for 24 hours to allow the hydric equilibrium to establish. The contact filter paper tests were carried out on soil specimens stabilized with SBR polymer and MICP process to the residual water content (2.5%) and nearly residual dry density (15 kN/m3). The soil specimen sizes were 50 mm in diameter and 20 mm height. The test procedure involves placing a piece of initially air dry filter paper against the soil specimen whose matric suction is required and sealing the whole to prevent evaporation. The filter paper was wetted to water content in equilibrium with the magnitude of the soil matric suction, and careful measurement of the water content of the filter paper enables the soil matric suction to be obtained from a previously established correlation. This provides a measure of the matric suction. ASTM D-5298-93 standard is used for the filter paper method.
Results and discussion
The SWCCs for dune sand stabilized with SBR polymer and MICP process under different SBR polymer and MICP process contents are illustrated in this study. Gradual transition from a unimodel SWCC to a bimodal SWCC was observed as SBR polymer and MICP process content increases. The unimodel SWCC is characterized by having two bends defining the air entry value and residual water content. The air entry value is defined as the matric suction above which air commence to enter the soil pores. The residual water content is defined as the water content beyond which no significant decrease in water content occurs. The bimodal SWCC is characterized by having four distinct bindings: two air entry values and two residual water contents. For SBR polymer and MICP process content equal to or less than 5 percent, the SWCC shows a unimodal form of SWCC. With the increase of SBR polymer and MICP process content greater than 5%, the SWCC indicate a bimodal form. It is further observed that the residual water content and the air entry value increases with the increase of SBR polymer and MICP process content. These observations are attributed to the presence of smaller pore size developed as a result of SBR polymer and MICP process particles filling the voids between sand particles. Bimodal SWCC are generally observed for gap-graded soils as well as soils that include two levels of pore sizes defined as macro pores and micro pores. Therefore, it can be inferred that the increase of SBR polymer and MICP process content, resulted in the formation of micro pores within the dune sand stabilized with SBR polymer and MICP process. The portion of the soil water characteristic curves representing macro pore sizes range between matric suction of 0.1 to 100 kPa. Whereas, the portion of the SWCC representing micro pore sizes lies between matric suction of 200 and 1500 kPa.
Summary and Conclusions
In this study, the effect of SBR polymer and MICP process content on the soil water characteristic curves of dune sand was evaluated. SBR polymer and MICP process contents considered include 0%, 5%, 10% and 15%. Results from this study indicated that, as the SBR polymer and MICP process content increased, the shape of the SWCC transforms from a unimodal form to a bimodal form. Furthermore, the air entry value and residual water content were observed to increase with increase in SBR polymer and MICP process content signifying increase in water retention capacity. The bimodal form of the SWCC indicates the presence of two levels of pore sizes; namely macro pores and micro pores. For 10% and 15% SBR polymer and MICP process content, the macro pores are considered the dominant pore size covering a broad range of the SWCC from 0.1 to 100 kPa. Therefore, it is inferred that the SWCC of dune sand stabilized with SBR polymer and MICP process are strongly related to the texture and pore size distribution of the dune sand stabilized with SBR polymer and MICP process which in turn, has a significant impact on its hydraulic characteristics.
./files/site1/files/134/2.pdf
Ata Aghaei Araei1, Nahid Attarchian, Ahmadreza Ghodrati Ghazaani, Hossein Haddad, Amir Saeid Salamat, Hossein Hasani,
Volume 13, Issue 4 (Vol. 13, No. 4 2019)
Abstract

Introduction
One-dimensional site response analysis is widely performed to account for local site effects during an earthquake. Most of these approaches assume that dynamic soil properties are frequency independent. Laboratory test results as well as in-situ testing show that shear modulus and damping ratio are dependent on the frequency of loading. Although the amplification factor at ground surface with respect to frequency dependent dynamic properties of mixed alluvium materials under different near-fault motions with various velocity period is recognized, it is not well characterized and quantified.
Material and analysis methods
In this study, the tests results of samples which obtained from the drilling borehole (BH14) form Pardis city in Iran, are used. The soil is classified as clayey of high plasticity/clayey sand (CH/SC) and almost uniform and similar in the whole log profile.
Shear modulus and damping ratios versus shear strain curves (ASTM D3999) of CH/SC natural materials at effective confining pressures of 1, 2 and 5 kg/cm2 with frequency of 0.5, 2, 5, and 10 Hz were used in one dimension response analyses using EERA Code.
Generally the damping ratio versus shear strain of the studied materials under low loading frequency (i.e. 0.5 Hz) almost falls in the range identified in literature. However, at higher loading frequencies (5 and 10 Hz) the damping ratios completely fall above the known upper bound trend. It is observed that, in general, the G and D values increase as loading frequency increases. Moreover, at certain strain G/Gmax ratio decreases as loading frequency is increased.
Different dynamics behaviour curves were used in analyses, in isotropic consolidation conditions. In order to assess the amplification, acceleration spectra, acceleration spectra ratio, coefficient of B, at ground surface under eight well-known near-fault ground motions, 1728 one dimensional analyses were carried out with EERA code. The analyses have been performed for three base acceleration levels, namely, 0.1 g, 0.35 g and 1 g, using the simple time history scaling method. Field and laboratory test results of shear wave velocity were used in the analyses.
In this study, several well-known near-fault motion records are utilized for ground response analyses. Near-fault earthquakes records were selected from the strong motion database of the Pacific Earthquake Engineering Research Center (PEER) and Iran Strong Motion Network (ISMN) for specific reasons of location of the near faults sites.
In current building codes, the upper 30 m soil deposits overlying the higher impedance earth crust are regarded as the most relevant and significant in characterizing the seismic behavior of a site. Therefore, it is useful to accomplish investigations for obtaining their amplification and spectral acceleration for 30 m and even thicker (e.g. 60 m, for usual deep excavation in Iran), in order to have economical and safe designs and constructions.
Results and discussion
Figure 1 presents a comparison of normalized spectral acceleration (B factor) versus period for 30 m and 60 m thick profiles and Vs testing for frequencies dependent and independent analyses under input base acceleration of 0.35g for longitudinal component of used earthquakes. B factor of Iranian Standard 2800 and UBC97 also has been presented in the figure. The spectral acceleration at short period for frequency dependent analysis is higher than that of the frequency independent analysis. The  increases in frequency dependent analysis and higher thick profile (i.e. 60 m).
Conclusion
Results show that the effect of loading frequency has a considerable influence on the acceleration response at the ground surface. For both 30 m and 60 m soil columns, the increase of the loading frequency, decreases the amplification factor especially in the short period zone of the spectra. Based on the acceleration response spectra of near field strong motions derived for soils types of I and IV in this study, the period corresponding to  in the design spectrum of Iranian Standard 2800 should increase to 0.5 and 1.4, respectively. Therefore, selection of the appropriate G and D curves measured at frequency similar to those of the anticipated cyclic loading (e.g. seismic) has a paramount importance../files/site1/files/134/1.pdf
Mr Alireza Darvishpour, Dr Ali Ghanbari, Dr Seyyed Ali Asghar Hosseini, Dr Masoud Nekooei,
Volume 13, Issue 5 (English article specials 2019)
Abstract

One of the effective parameters in the dynamic behavior of reinforced soil walls is the fundamental vibration frequency. In this paper, analytical expressions for the first three natural frequencies of a geosynthetic reinforced soil wall are obtained in the 3D domain, using plate vibration theory and the energy method. The interaction between reinforced soil and the wall is also considered by modeling the soil and the reinforcement as axial springs. The in-depth transverse vibration mode-shapes, which were impossible to analyze via 2D modeling, are also analyzed by employing plate vibration theory. Different behaviors of soil and reinforcements in tension and compression are also considered for the first time in a 3D analytical investigation to achieve a more realistic result. The effect of different parameters on the natural frequencies of geosynthetic reinforced soil walls are investigated, including the soil to reinforcement stiffness ratio, reinforcement to wall stiffness ratio, reinforcement length, backfill width and length to height ratio of the wall, using the proposed analytical expressions. Finally, the results obtained from the analytical expressions proposed are compared with results from the finite element software Abaqus and other researchers’ results, showing that the proposed method has high accuracy. The proposed method will be a beginning of the 3D analytical modeling of reinforced soil walls.
 


Ehsan Amjadi Sardehaei, Gholamhosein Tavakoli Mehrjardi,
Volume 13, Issue 5 (English article specials 2019)
Abstract

This paper presents a feed-forward back-propagation neural network model to predict the retained tensile strength and design chart to estimate the strength reduction factors of nonwoven geotextiles due to the installation process. A database of 34 full-scale field tests was utilized to train, validate and test the developed neural network and regression model. The results show that the predicted retained tensile strength using the trained neural network is in good agreement with the results of the test. The predictions obtained from the neural network are much better than the regression model as the maximum percentage of error for training data is less than 0.87% and 18.92%, for neural network and regression model, respectively. Based on the developed neural network, a design chart has been established. As a whole, installation damage reduction factors of the geotextile increases in the aftermath of the compaction process under lower as-received grab tensile strength, higher imposed stress over the geotextiles, larger particle size of the backfill, higher relative density of the backfill and weaker subgrades.

 


Mahnaz Firuzi, Mohammad Hossein Ghobadi, Ali Noorzad, Ehsan Dadashi3,
Volume 13, Issue 5 (English article specials 2019)
Abstract

Slope stability could be a major concern during the construction of infrastructures. This study is focused to analyze the slope stability of Manjil landslide that was located 41+400 to 42+200 km along Qazvin-Rasht freeway, Iran. The Manjil landslide, which had 168 m long and approximately 214 m wide, was occurred due to inappropriate cutting in June 2013 and led to destructive and closure of freeway. Slope stability analysis was carried out using a finite element shear strength reduction method (FE-SRM). The PHASE2D program was utilized in order to model the slope cutting and stability of landslide. Slope angle was flatted with 3H:2V geometry and stabilized with piling. The results indicated safety factors of 1.95 and 1.17 in the static and pseudo-static states, respectively, while the maximum bending moment with single pile (SP) in the pseudo-static state was 5.69 MN. Maximum bending moment of the pile around the slip surface was significantly large and more than the bending moment capacity of the pile. Due to the large bending moment on the pile, pile-to-pile cap connections (two pile group: 2PG) should be designed at the toe of the slope. The obtained results showed reduction of this parameter to 2.48 MN. Thus, it can be concluded that 2PG is a suitable stabilization method for the Manjil landslide.
Mr Vahid Yousefpour, Mr Amir Hamidi, Mr Ali Ghanbari,
Volume 13, Issue 5 (English article specials 2019)
Abstract

Sandy soils usually contain different amounts of fines like silt and clay, causing some changes to their shear strength and dilation characteristics. Bolton [1] conducted  some experiments on the different sands and suggested a relation between the parameters of the soil shear strength. In this paper, some experiments were performed on fine contained sand and the extended Bolton's relation was has been proposed. In this paper, shear strength and dilation behavior of a pure sand mixed with different amounts of silt or clay fines were studied using direct shear test device (100*100*30 mm), and a total of 96 tests were carried out. The samples were prepared separately using clay and silt contents of 0, 10, 20 and 30% in different relative densities of 70, 80, 90 and 100%. They were tested under three surcharge pressures of 90, 120 and 150 kPa, under particle crushing threshold. Variations in shear strength, maximum friction angle, critical state friction angle and cohesion, as well as dilation angle were investigated by increasing in the mentioned amounts. The results demonstrate that shear strength, dilation angle, maximum friction angle decreased by clay content increase, however, they increase with increase in silt content. In addition, a new form of the Bolton's relation for fine contained sandy soils was presented.

Page 5 from 8     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb