Search published articles



Ali M. Rajabi, Hossein Khosravi,
Volume 12, Issue 4 (12-2018)
Abstract

Introduction
In general, landslides, in particular, earthquake-induced landslides, are among the phenomena that have caused great damages in recent years in Iran and the world. Although many studies have been done on the identification and description of landslides in general, the study of landslides caused by the earthquake, especially in Iran, is at the beginning stages. In a few studies, some landslides and some of their characteristics have been introduced. A magnitude 7.7 earthquake occurred in the Guilan Province was occurred on May 31, 1990. This earthquake is one of the most important earthquakes in Iran history due to its magnitude and occurrence of landslides. In various studies, the most important landslides have been listed. The development of quantitative and qualitative studies on earthquakes that have caused many landslides (such as the Manjil, Avaj, Firoozabad, Kojur, Sarein and Ahar and Varzaghan earthquakes) increase our understanding of natural disasters and, consequently, the management of the dangers resulting from them. The purpose of this research is to identify the factors affecting the occurrence of landslides caused by earthquakes, to determine the impact of each on the occurrence of this phenomenon, and also to prepare a map of earthquake hazard zonation hazard by utilizing the methods used in this research. In this study, hierarchical analysis method has been used to prioritize the factors affecting the occurrence of landslide and also the zoning of earthquake landslide hazard in the study area.
Research Methodology
The study area is located between 49˚ 30 and 4945˚ and latitudes 36º 0045" and 36º 30 52" with a surface area of ​​309.30 km2. In this research, in order to zoning the earthquake-induced landslides hazard, in addition to providing a map of landslides, seven factors influencing the occurrence of this phenomenon were identified and examined. These factors included elevation, slope, arias intensity, friction angle, adhesion, curvature of the slope and aspect. In this research, Analytic Hierarchy Process (AHP) method, one of the multi-criteria decision making models, was used with two approaches to using expert knowledge and data and expert knowledge together to prioritize the factors influencing the occurrence of landslide. Finally, two landslide hazard zonation maps were prepared. In a hierarchical analysis method related to the expert judgment, it was used to determine the priority of different criteria and sub-criteria and convert them into small amounts of oral judgments (expert opinion) based on the pair comparison, in which the decision maker preferred the factor in relation to other factors using the relevant tables, these judgments are converted into small amounts. In the method of using data and expert judgment simultaneously, first, in order to determine the priority of criteria from oral judgments (collection of expert opinions), we used to determine the importance or weight (Wi) of each sub-criterion (R) is also used to link the landslide area to each class and landslide area in the region.
Results
The results obtained from the paired comparison of the effective factors in the occurrence of landslide show that the relative preference of the factors include the factor of arias intensity, friction angle, slope, adhesion, aspect, height and curvature of the amplitude. The greatest influence on the sub-criteria for the sub-criteria is 10-11.54, which is related to the arias factor and also the lowest effect for the sub-standard of the domain curvature factor. Also, according to the zoning maps, in the first model, 73% and in the second model, 57% of the surface area are very high and very high risk areas, which indicates the high sensitivity of the study area to the earthquake-induced earthquake phenomenon.
According to the results obtained from the verification and evaluation of the models and comparison of the mapped data with the hierarchical analysis method (using expert knowledge and data) and a method that uses only expert knowledge, the map is derived from a method where bundles of knowledge and data are used simultaneously, in order to weigh the parameters, it is more in line with the map of the landing list of the region.
Conclusion
According to the results obtained from the review and evaluation of the two models in a method in which knowledge and data were used together, the QS value was 0.40 and the accuracy of the method (P) was 0.016. However, in a method in which only the expert judgment used to weigh the criteria and sub-criteria, the sum of the quality and accuracy of the method were calculated to be 0.37 and 0.006, respectively. Hierarchical analysis method, in which the benchmarks and sub-criteria of benchmark knowledge and data are used together, have a better performance than the other model, and the results are closer to reality. In addition, it also works better in distinguishing between high and high risk areas../files/site1/files/124/5rajabi%DA%86%DA%A9%DB%8C%D8%AF%D9%87.pdf
Sheyda Nazari, Afshin Meshkat-Dini, Jafar Keyvani,
Volume 12, Issue 4 (12-2018)
Abstract

Introduction
Study on the main characteristics of strong ground motions, has relatively long history. The observations and investigations on the structural damages after strong earthquakes such as Northridge 1994 in California, Kobe 1995 in Japan, Tabas 1978 and Bam 2003 in Iran, are representatives of the destructive effects of strong near-field records. The most important specification of the near-field records which distinguish them from far-field records, is their ability to generate energized and relatively short-duration acceleration spikes as well as high amplitude and long-domain velocity pulses. Moreover, according to the lack of accurate statistical profiles as well as many deficiencies, processing the spectral existent data is not able enough to fully explain the seismic tremors. Based on the fact that the great earthquakes have long recurrence interval and also many high seismic zones of Iran do not possess strong tremors, hence generating and simulating feasible great events is required by applying closed form models and analysis of available data. In this study, in order to simulate the existent pulses in the time history of near-field records, the developed mathematical configuration is presented by analytical comprehensive attitude on the closed form model by Mavroeidis and Papageorgiou (2003).
Material and methods
Simulation of strong ground shakings, especially in areas where there is limited recorded data, plays a key role in assessing dynamic behavior of structures. Owing to unique characteristics of strong near-field ground motions, it is not possible to determine exact effects of these strong records on structures using simplified mathematical models. It is feasible to develop more complicated models which represent much more characteristics of near-field ground motions. Mavroeidis and Papageorgiou (2003) studied the parameters affecting near-fault ground motions. Their studies resulted in introducing a mathematical model capable of interpolating velocity pulses of near-field earthquake records (MP model). This closed-form MP model interpolates long duration pulses using a set of input spectral parameters.
 The pulse period, the pulse amplitude, the number and phase of half cycles are the key parameters that define the shape of velocity pulse. Thus, a four-parameter model has been developed to describe velocity pulses which contain forward directivity effects. In this research, it was observed that by using a combination of cubic and exponential terms, an enhanced model for interpolating the pulses presented in near-field earthquake records could be achieved (EMP model). Figure 1 shows the analytical interpolation of acceleration and velocity time histories using MP and EMP models.
 
Figure 1. Fitting of acceleration time histories with MP and EMP models
 
Results and discussion
Based on the obtained results, it is observed that there is a striking similarity between analytical characteristics obtained by actual earthquake records and mathematical pulses. Moreover, using the enhanced closed-form model (EMP model) reduces discrepancy between the results obtained under actual and the synthetic earthquake records.
Conclusion
Findings of this research reveal that equivalent pulses could be a good representative of actual earthquake records analytically, in order to assess the seismological characteristics of these tremors. It is worth mentioning that modelization of forward directivity pulses displayed in time history of strong ground shakings, is an efficient measure in evaluating seismic response of structures. In addition, due to stochastic nature of earthquakes, computational uncertainties and descriptive limitations of analytical parameters, using closed-form models require a high level of accuracy../files/site1/files/124/8nazari%DA%86%DA%A9%DB%8C%D8%AF%D9%87.pdf
 
Kazem Saber Chenari, Abolareza Bahremand1, Vahed Berdi Sheikh, Chooghi Bairam Komaki,
Volume 13, Issue 1 (8-2019)
Abstract

Introduction
One of the main problems in the Golestan province watersheds is the high degree of erosion and soil degradation, so that the equilibrium between the soil process and the soil erosion is unbalanced, and the erosion rate increases from west to east. Among these, the gully erosion and piping have the highest role. Gully is a canal or stream with the headcut with active erosion, sharpened slope and steep walls that results from the destruction of surface flow (usually during or after the occurrence of precipitation), dissolution movements, and small mass movements. The extent of gully in the eastern parts of Golestan province has caused the land degradation of arable land and landscape and has increased the conservation cost and etc. Because of connecting upstream areas of the basin to the downstream areas, gully has particular importance, which provides the possibility of sediment and pollutant transport, road destruction and financial losses to agricultural lands. In order to prevent and control the development of gully processes from a small scale to large one, it is a versatile utility to identify and extract the areas prone to gully erosion.
Due to the high intensity of gully erosion and its increasing growth in the Gharnaveh watershed, the Garnaveh River has an unstable status and severe eroded gully, and in some areas it has a great depth and vertical lateral walls, as well. Therefore, in this research, the watershed of Garnaveh was selected to prepare the risk areas of gully erosion.
The aim of this research is to determine Gully Erosion Hazard zoning using Frequency Ratio and Gupta & Joshi methods (Gully Nominal Risk Factor-GNRF) in the Garnaveh watershed (Golestan province). Ultimately, the accuracy of the model has been evaluated using quality sum method and Kappa coefficient.
Material and methods
The study area is located in the northern part of Iran, Golestan province. The Garnaveh watershed with an area of about 78430 hectares lies between longitudes 370360 E and 414472 E, and latitudes of 4183819 N and 4155267 N (UTM Zone 40).
At first, gully erosion inventory map with the scale of 1:75,000 (dependent variable) for the Gharnaveh watershed has been prepared using multiple field surveys and satellite images. From total gullies, 70% have been selected randomly for building gully erosion hazard zoning model and the remaining ones (30%) have been used to validate the provided model.
In this research, seven data layers including slope percent, slope aspect, plan curvature, lithology formation, land use types, distance from rivers and distance from roads have been selected as gully erosion controlling factors (covariates/ independent variables) and then they have been digitized in ArcGIS software. The amount of Gully density of each factor class has been calculated from a combination of independent and dependent variables, and the rating of classes have done based on Frequency Ratio and Gully Nominal Risk Factor equations. Finally, the Gully erosion hazard zoning map has been drawn from the summation of weighting maps in ArcGIS. In this map, the value of each pixel is calculated by summing the weights of all the factors in that pixel. The pixel values are categorized based on the natural breaks classifier into very low, low, medium, high and very high hazard zones. Then, an accuracy of zoning map has been evaluated by quality sum method and Kappa coefficient.
Results and discussion
The result of affecting factors classification of the gullies shows that loess deposits formation, rangeland, areas with low distance from road and rivers, northwest aspect, low slope amplitude and concave slopes contain the most susceptibility to gullying. The results of frequency percent comparison of gullies in hazard classes show that from all gully zones in the validation step of the GNRF and frequency ratio models %74.52 and %78.11 of zones are located in the high and very high risk classes, respectively. The result of model validation using the quality sum method and a Kappa coefficient show that the frequency ratio model is a more appropriate model for gully erosion hazard zoning (with the quality sum and a Kappa coefficient of 3 and 0.89, respectively) than the GNRF model (having the quality sum and Kappa coefficient of 1.27 and 0.74, respectively).
Conclusion
In this research, the areas susceptible to gully erosion in the Gharnaveh watershed have been mapped with the frequency ratio and GNRF (for the first time) models. For this purpose, 7 affecting factors (independent variable) and 805 gully zones (dependent variable) were provided to measure the hazard maps of gully erosion. The following results are obtained from this study.
- The geology factors were identified as the most effective factors in the occurrence of gully erosion in the Gharnaveh watershed.
- Based on the gully erosion zoning hazard map of the Gharnaveh watershed, more than 70 percent of gullies are situated in the very high and high hazard classes.
- The produced gully erosion hazard map is useful for planners and engineers to reorganize the areas susceptible to gully erosion hazard, and offers appropriate methods for hazard reduction and management, as well../files/site1/files/131/4Extended_Abstract.pdf
 
Iman Aghamolaie, Gholamreza Lashkaripour, Mohammads Ghfoori, Naser Hafezimoghadas,
Volume 13, Issue 1 (8-2019)
Abstract

Introduction
The problematic collapsible soils are deposits with wind origin that constitute about 10% of the total area of ​​the earth. Several countries, including China, Russia, the United States, France, Germany, New Zealand, and Argentina have vast areas of collapsible soils. These deposits usually form a semi-stable honeycomb structure and are highly susceptible to sudden changes in the volume reduction due to becoming humid. Collapsibility and other related issues such as different subsidences, land cracks and landfalls seriously damage the infrastructures constructed on these soils.
 By the growing rate of urbanization in different parts of the world, the probability of construction on these soils and consequently water availability for these soils will increase; as a result, humidity increases and the collapse of these soils may occur. Therefore, studying the behavior of these types of soils is very important. Over the past six decades, many researchers have studied the collapse mechanism of collapsible soils due to becoming humid. Discussions on this subject are summarized in three categories: traditional methods, soil structure studies, and soil mechanics-based methods. In the present work, collapsibility and its controlling factors in the soils of Kerman city are investigated.
 
Material and methods
To determine engineering properties of Kerman deposits in this research, the geotechnical information was gathered and 50 core samples were extracted from different parts of the city. The sampling points were selected such that they could have a high overlap. X-ray diffraction (XRD) was applied to determine the mineral type and soil structures while scanning electron microscopy (SEM) was used to study grain arrangement.
Results and discussion
Geotechnical characteristics of the samples collected from Kerman plain deposits include their physical and mechanical properties. Based on the obtained results, this fine-grained sediment generally includes two CL and CL-ML groups. The mineralogy studies of Kerman city soils show that the minerals in these deposits are mainly illite, chlorite, illite-smectite, calcite, quartz, and gypsum. In order to study the collapsibility level of the soils in Kerman through the field studies, samples were taken from different parts of the city and the tests were carried out to determine the physical properties, collapsibility index, and structural studies. Through the SEM analyses, samples related to Haft Bagh area, Motahhari Town, and Pedar Town revealed an open structure and intergranular pores and thus a high level of collapsibility. On the other hand, in the majority of samples taken from the central part of the city, such as Esteghlal Street, Azadi Square, Bahmaniyar Street, and Hafez Street, the soil aggregates generally have corner-to-corner connectivity, with no specific order in their structure, and the arrangement of the particles is random and irregular. The orientation of the particles mostly shows no sharp pattern. In addition to soil particles, they have shown random and disorientated cavities with small sizes, suggesting the density and compactness of the soil indicating a low to moderate collapsibility. In some areas (e.g., Pedar Township and Motahhari Township), crystalline salt and gypsum crystals are clearly seen. It is expected that by increasing the amount of water, these salts dissolve and their effects can be observed as dissolution cavities.
 The dissolution of soluble crystals can also reduce the strength of the soil structure and ultimately lead to soil degradation. Calcite crystals are also found in some places in the form of calcite cement among the grains, sometimes as single crystals, and sometimes as lime nodules within the soils of Kerman city. Among the stated criteria in this research, Denisov, Holtz, and Hill criteria, the Russian regulations and ASTM standards were employed to assess the potential of the studied soil collapsing. Based on the criterion of the construction regulations of Russia, it was found that the deposits of the city of Kerman are mainly collapsible (L>-0.1).                     
Moreover, based on the Denisov criterion (if e/eL>1.5 the soil is non-collapsible, if it is between 0.75 and 1.5, the soil is prone to collapsing, and if it is between 0.5 and 0.75, the soil is severely collapsible), soils of Kerman are within the range of collapse-prone soils. Finally, based on the ASTM criterion, in some areas of the city like Motahhari Town, Pedar Town, and Haft bagh, soils show a high collapsibility. In comparison, in the central parts of the city, the values of this criterion vary between 0.15 and 11, suggesting the presence of soils with a moderate collapsibility. Comparing the results obtained using these criteria it is seen that areas with a collapsible behavior are relatively similar collapsibility results are obtained.
Conclusion
Based on the achieved results, fine-grained sediments of Kerman city are mainly composed of CL and CL-ML groups. Mineralogy results indicate that the minerals in these deposits are mainly illite, chlorite, illite-smectite, calcite, quartz, and gypsum. SEM results for the central part of Kerman city confirm the compressed and densely compact form of soil particles. The results obtained, using the construction regulations of Russia show that the soils in the study area are collapsible. According to the Denisov criterion, they were found to be prone to collapse. Finally, based on the ASTM results for the central parts of the city, soils exhibit a low to moderate collapsibility. However, in some areas of the city, such as Motahhari and Haft bagh, soils show a complete collapsibility behavior../files/site1/files/131/1Extended_Abstract.pdf
 
Vahid Daneshjoo, Reza Farokhzad,
Volume 13, Issue 1 (8-2019)
Abstract

Introduction
Nanostructured materials have gained increasing attention of industry and the academia in recent decades, due to their prominent behaviors. In this regard, the building industry is considered to be the major consumer of nanostructured materials in terms of its needs, including strength, resistance, durability and high performance. Studies on nanoscale behavior of cement and concrete to develop new building materials and their applications are of high importance. A typical method for the development of high performance concrete (HPC) often contains various parameters, including the mix of conventional concrete with different types of additives. Nano-Calcium carbonate (Nano-Precipitated Calcium Carbonate) is a nano-sized filler which is used in this research. The results indicate that the higher the optimal content of nano-precipitated calcium carbonate powder, the higher the initial heat of the roller-compacted concrete; also, the resistance of the samples significantly increases over time. However, the level of permeability of roller-compacted concrete decreases by optimal increase of nano-calcium carbonate powder due to its fine grains, filling properties, and high specific level. The results of this study show that the adequate use of this material improves some properties of roller-compacted concrete.
Material and methods
In this study, the content of Nano-calcium carbonate used was selected at 0, 1, 2, 3 and 4 percent replacing a volume of cement consumed in concrete. Type II Portland cement, crushed fluvial sand, and crushed coarse aggregates with a maximum size of 19 mm were used. The aggregates’ grading range in the mix has been selected according to the ACI325-10R. The chemical formula of Nano-calcium carbonate powder is CaCo3 and the average particle size is between 15-40 nm
According to the roller-compacted concrete specifications, 5 mix designs have been used with different proportions of stone materials in preparing of concrete. The samples were made on a vibrating table and in the cylindrical molds of 15 × 30 cm according to ASTM C1176 standard.
By increasing the cement grade, the slope of the Vebe curve increases, which means an increase in speed and reduction in efficiency over time in higher grades. Increasing the cement grade from 275 to 300 kg/m3 leads to increased Vebe time. In other words, it can be said that the efficiency is reduced at a lower rate in lower grades of new roller-compacted concrete mix. The Vebe time of the roller-compacted concrete pavement should be between 30-40 s to achieve optimal efficiency. According to the results of Vebe time, the efficiency of the roller-compacted concrete with the grade of 300 kg/m3 has a better functionality than other mixtures and lasted more than others in the 30 to 40 second range. Accordingly, concrete with a grade of 300 kg/m3, is the compressive strength according to this design.
Determining the compressive strength of cylindrical concrete samples of different ages is done according to the ASTM C39/C39M standard. For permeability test, the BS EN 12390-8: 2009 was used in which the sample should be put under pressure of  (0.5±)5 for 72 hours immediately after molding. Determining the tensile strength of concrete cylindrical samples at different ages is done according to the ASTM C496 standard. The peak is obtained using the XRD analysis of the crystallite size by determining the width of the peaks. In interpreting the XRD data, a list of peak resolution and their intensities is observed. To determine the elemental composition of materials, a non-destructive analytical technique is used by X-ray which is so-called XRF (X-ray fluorescence). A scanning electron microscope is a powerful magnification tool and is used to distinguish elements.
Results and discussion
The results indicate that the increased Vebe time occurs by an increase in the percentage of nano-calcium carbonate. In terms of the compressive strength of cylindrical roller-compacted concrete samples, 2% of nano-calcium carbonate at the ages of 7, 28, and 90 days has been effective in increasing compressive strength in higher ages. Such that, at the ages of 28 and 90 days, it is increased by 12% and 15 % compared to the control sample, respectively. The nano content increases over 15% causes decreased compressive strength and thus had negative effects on the rheological properties of the roller-compacted concrete. In terms of tensile strength of the cylindrical roller-compacted concrete samples, 2% of nano-calcium carbonate at the ages of 7, 28 and 90 days has been effective in increasing compressive strength in higher ages, such that at the ages of 7, 28 and 90 days, it has been increased by 25%, 30% and 30 % compared to the control sample, respectively. However, it can also be concluded that the excessive increase has partly reduced the tensile strength.
The variation of the permeability coefficient is a function of concrete porosity and water penetration in the roller-compacted concrete. Also, there are significant changes in the concrete permeability coefficient by adding different percentages of nano-calcium carbonate to concrete.
Adding nano-calcium carbonate up to 2% of cement weight to the roller-compacted concrete reduces the permeability coefficient of the roller-compacted concrete. One of the reasons for this phenomenon is capillary interstice filling in the roller-compacted concrete. Moreover, the nano-calcium carbonate increase of over 2% of cement weight raises the permeability of the roller-compacted concrete.
Adding 4% of nano-calcium carbonate to the roller-compacted concrete pattern increases the intensity of the peaks in the XRD test. Given that the average crystallite size is obtained from full width at half height of the peaks, by increasing the peaks’ intensity and their width at half height of the peaks, we get smaller crystallite size. Also, by adding 4% of nano-calcium carbonate, the widths of the peaks are increased, which means smaller crystals and increased crystallite inner tension.
Conclusion
Nano-calcium carbonate, due to its special features, including a high specific surface area, has a good performance in improving the mechanical properties and durability of the roller-compacted concrete, if it is used at a certain and optimal amount. The roller-compacted concrete with the grade of 300 kg / m3 has better functionality than other mixtures, and lasted more in the 30 to 40 second range.
The mix design containing 2% of nano-calcium carbonate replacing cement, has the highest compressive strength at the age of 7 days and shows 4% increase in resistance compared to a control sample at the age of 7 days. The mix design containing 2% nano-calcium carbonate has the highest compressive strength at the age of 28 days and shows 12% increase in resistance compared to a control sample at this age and improved the compressive strength. The mix design containing 2% nano-calcium carbonate has the highest compressive strength at the age of 90 days and shows 15% increase in resistance compared to a control sample at this age. The mix design including 3% of nano-calcium carbonate replacing cement, has the highest tensile strength at the age of 7 days, and shows 25% increase in resistance compared to a control sample at the same age. The mix design containing 2% of nano-calcium carbonate replacing cement, has the highest tensile strength at the age of 28 days and shows 30% increase in resistance compared to a control sample at the same age. The mix design containing 2% of nano-calcium carbonate replacing cement, has the highest tensile strength at the age of 90 days and shows 30% increase in resistance compared to a control sample at the same age. ./files/site1/files/131/3Extended_Abstract.pdf
 
Behrooz Samadian, Ali Fakher,
Volume 13, Issue 1 (8-2019)
Abstract

Introduction
Geotechnical investigations merely through boring and engineering experiments are considered a difficult task as they are highly costly and time-consuming. The identification of large areas initially requires geological studies followed by the inclusion of geotechnical information. Finally, a geological and geotechnical classification is prepared for the entire area. This type of classifications is employed in strategic urban planning and quick selection of geotechnical variables in small-scale projects. The present research performed the steps involved in these investigations and classifications for the city of Sanandaj, Iran. Hence, the geological-geotechnical classification of the city of Sanandaj was presented by integrating the geological information of this city with the geotechnical data obtained from drilled boreholes as well as multiple wells at different locations in this city.
Materials and Methods
This study was conducted on the city of Sanandaj in six steps. The steps involved and their respective objectives are given in summary in Table 1.
Discussion
This study is applicable to those regions with insufficient information on their boreholes. The present study used only 211 boreholes, the distance
Table1. Steps involved in this study
Objective or result Title Step
Identifying the general geological characteristics General geological investigation of the considered region 1
Determining the rock units and soil layers as well as their outcrops and investigating their appearance Determining the appearance of the layers through field investigations 2
Determining the layer types and drawing the longitudinal and lateral profiles Identifying subsurface layers 3
Determining the characteristics of geological units and their origin of emergence Geological classification based on the steps involved in formation of units 4
a)Collecting the available information, b) controlling the available information, c) completing the information Determining the geotechnical attributes of geological units 5
a) Presenting geological-geotechnical classification, b) presenting geological identification criteria to determine the type of a given unit at the site of the project Presenting a geological-geotechnical classification for the considered region 6
between which was greater than 5 km in some areas of the Sanandaj city. Hence, although no sufficient information was available on many areas of Sanandaj, the proposed method in this study was able to identify the geotechnical attributes of all soil layers and rock units. This study emphasizes on geological and geotechnical classification and presents a step-by-step method to systematically relate geological and geotechnical studies. By integrating these classifications, geotechnical identification of extensive regions such as urban areas can be facilitated even if the number of boreholes is insufficient. Moreover, simple identification criteria can be extracted from this method, through which the engineering attributes of the layers at each point can be determined. This method can be used as an optimal and economical method for geotechnical identification of extensive areas.
Conclusion
The following summaries can be concluded from this study:
-The step-by-step procedure of integrating geological and geotechnical information was described, through which the geological-geotechnical classification for this city was obtained.
-The geological units identified for Sanandaj were shale, limestone, andesite, and Quaternary, which includes layers of alluvial clay, residual clay, and sand and gravel. The extent and distribution of each of the aforementioned units in Sanandaj were identified and plotted. Moreover, the physical and mechanical characteristics of each of the units as well as their geotechnical hazards were determined and presented.
-In this study, simple geotechnical criteria such as faults, altitude level, and distance from river were identified. These parameters were effective in identification of geological units in Sanandaj../files/site1/files/131/5Extended_Abstract.pdf
 
Kazem Bahrami1, Seyed Mahmoud Fatemi Aghda, Ali Noorzad, Mehdi Talkhablou,
Volume 13, Issue 2 (8-2019)
Abstract

Aggregates are one of the high demand building materials in construction of structures and their characteristics have important effects on durability and permanence of projects. Abrasion resistance is one of the important features of aggregates that their utilization in concrete and asphalt are affected by texture and lithology of them. As rock consisted of harder minerals have higher abrasion resistance like igneous rocks, due to more siliceous minerals. More varieties in mineralogy compound usually lead to increase in aggregate abrasion. Aggregates that are contained of different minerals usually have less abrasion resistance. Porosity usually decreases the resistance abrasion. In addition to lithological properties, the environment where aggregates are deposited is important in determining resistance-related parameters of aggregates.
Rivers, alluvial fans, and taluses are the main environments where aggregates are deposited. Geological processes, such as weathering and particle movement may cause changes in natural aggregates, hence affecting their abrasion and impact resistance. Rock weathering can results in increasing porosity, producing minerals that are weaker in comparison to their original rock.
In the process of particles transport by stream water, weak parts of aggregates will be omitted. The present study is focused on the relationship between geology medium and the weight loss of aggregate in Los Angeles test. 
Methodology
Considering that lithology features in aggregates resistance against abrasion have an important role, in order to examine the effect of various geology environments in abrasion resistance of aggregates, the medium should be chosen having similar lithology. Therefore, the north of Damavand and the south of Daneh Khoshk anticline (north of Dire plain) were firstly chosen by using geology map, satellites images and field study. Damavand zone consists of trachyte and trachy-andesite volcanic rocks. These rocks cover the whole area around the Damavand peak. Also, Daneh Khoshk anticline is covered by thick Asmari formation. The selected environment are in the length of each other. Such that taluses feed alluvial fan and alluvial fans feed rivers. Samples were collected from different area of southern part of anticline. 10 river area, 12 alluvial fan and 6 taluses in the south-west area of Daneh Khoshk anticline (north of Dire plain) were chosen. Los Angeles test has been done according to standard A method ASTM D2216-10, 1990 on samples and the results were analyzed by analogous analyzer.
Results and discussion
Results show that porosity and micro-crack percentage increase, respectively in accumulated aggregate in river, alluvial fans and taluses areas. Also, porosity and micro-crack in various alluvial fans is different and is influenced by the area and length of main channel of alluvial fans’ catchment. The porosity decreases by the increase in the length of channel and area of alluvial fans’ catchment.
The percentages of aggregate weight loss in talus, alluvial fan and river areas decreases, respectively. Based on the obtained results, the lowest rates of weight loss belong to river environments (23.7 % in Daneh Khoshk and 42% in Damavand) whereas the highest rates of weight loss belong to taluses (49.3% in Daneh Khoshk and 48% in Damavand). The alluvial fans have an average state. Another noticeable point is the high weight loss in Los Angeles test in Damavand aggregate. Due to having harder mineral, igneous aggregate have more abrasion resistance, but this research illustrates that the weight loss resulting from Los Angeles test in these aggregates is high. This is because of virtues texture that weakness against the impact as well as their high porosity.
Conclusion
The result of this research indicates that the volume of aggregate weight loss in Los Angeles test is related to aggregate accumulation environment. The extent of aggregate abrasion resistance is lowest in talus medium and increases in alluvial fan and river environment, respectively. The difference in aggregate abrasion resistance in various areas result from geology process differences that applies to aggregates in various environment. The extent of caring particles in talus environment is very low and the type of movement is mass or sliding type in these media, micro-crack and weak parts remains within aggregates. The surface of micro crack is weak such that breaks easily in Los Angeles test due to the pressure results from the impact of aggregate, as well as the impact of steel ball on aggregate leading to aggregate breakages. Aggregates move more distances in alluvial fan and river. Aggregate strike together in riverbed and alluvial fan yielding to aggregates breakages from micro-cracks. As the movement distance increases, aggregates approach more to intact rock. During the particles move, the weathered and weak parts are damaged by aggregate abrasion to riverbeds and alluvial fan, and more resistant and harder aggregates remain. As the water current increases, the aggregates impact each other harder, more resistant micro-crack breakages and this change leads to decrease the weight loss in Los Angeles test.
./files/site1/files/132/1Extended_Abstracts.pdf
Seyed Davoud Mohammadi, Elahe Hosseinabadi2,
Volume 13, Issue 2 (8-2019)
Abstract

Introduction
In regard to consumptions of oil materials by human, soil contamination causes worriness in environment and geotechnics areas in previous years, such that studying of soils lead to soil refine, soil bearing capacity and soil changing by infiltration of contamination. The rates of problems on environment are different and it depends on soil types and its structure, organic materials values, soil permeability, climate and type of contamination. In viewpoint of geotechnics, many investigations have been done on various contaminated soils that their result leads to optimum application of those as road construction and decrease of costs. In this research, with adding of different percentages of gasoil into the soil, engineering properties of contaminated soils were investigated and its effect on the erodibility of soils was studied. Regarding to the Hamedan oil storages complex extension and lateral installations, the study of contaminated soils are essential. Also, because the location of that complex is at urban area, the environmental risk of leaking of oil materials is available. Thus, the goal of this research is to investigate the erodibility of contaminated soils at the studied area.     
Material and methods
Hamedan oil storages complex is located about 17.7 km far from Hamedan city. In order to study engineering geological properties and erodibility of three layers of soils in studied area, the soil samplings were done from three soil layers. Based on the field and laboratory results, all of three soil layers were classified into SM class and had too much lime (Table 1). Testing program is divided into engineering geological tests and erodibility tests. All of the engineering geological tests on the uncontaminated and contaminated soils were undertaken according to ASTM (2000) (Table 2). In order to prepare the contaminated soils and to determine the maximum absorbable gasoil, the soil samples were contaminated by gasoil and some standard compaction tests were undertaken on the soils. According to the test results, upper and lower layers were saturated by 19% of gasoil and middle layer was saturated by 15% of gasoil. After determination of gasoil saturations percentages for studied soil layers, the 7, 13 and 19 percentages of gasoil were added into the upper and lower layers and the 5, 10 and 15 percentages of gasoil were added into the middle layer. Thus, for engineering geological tests, 9 samples of contaminated soils were prepared.   
Table 1. Soil properties of studied area
Lime percentage Soil type PI% PL% LL% Sample Layer
85.15 SM 8.99 40.65 49.64 L1 Upper
62.16 SM 15.49 32.12 47.61 L2 Middle
88.72 SM 15.46 27.14 42.60 L3 Lower
Table 2. Engineering geological tests according to ASTM (2000)
Standard No. Test type
ASTM-D422 (2000) Soil classification
ASTM-D4318-87 (2000) Atterberg limits
ASTM-D698 (2000) Standard Compaction
ASTM-D3080 (2000) ِDirect shear
ASTM-D2166-87 (2000) Uniaxial Compressive Strength
To prepare the sample for direct shear test, a mould with dimension of 10 cm *10 cm *2 cm was used. Then, the prepared sample was set inside the shear box and vertical stress was applied. All of direct shear tests were done in unconsolidated-undrained condition (UU), in maximum dry unit weight dmax) and in optimum water content ( opt)of soil samples.
All of the soil samples for uniaxial compressive strength tests were prepared in maximum dry unit weight and optimum water content. To prepare the soil samples, a split tube mould with 5*10 cm of dimensions was used. Based on that test, the soil samples are set under axial load and failure occurred at the end of the test.
To investigate the effect of gasoil on soil erodibility, first the erodibility tests by using rainfall simulator were done on uncontaminated soils and then, on contaminated soil with different percentages of gasoil. All of soil samples for erodibility test were prepared into the pans with 30*30*15 cm of dimensions and in maximum dry unit weight and optimum water content. The thickness of soil samples were 5 cm and the gravelly drainage layers were 10 cm. The rainfall intensity was equal to rainfall intensity of sampling area (29 mm/hours) and the steepness of soil samples were equals to sampling area steepness (10 to 40 degrees). After catching of runoff and drained water, the eroded soils were weighted and the weight loss of soil samples was calculated.   
Results and discussion
All of the engineering geological tests results are shown in Table 3. With increasing of the gasoil percentages, dry maximum unit weights of all three layers have decrease trends while the optimum water contents have increase trends. Surrounding of the soil grains by gasoil and water causes the easy sliding of grains and more compaction. The Atterberg test results shows that liquid and plasticity limits of soil had increase trend with increasing the gasoil. In the middle layer its trend is more than the others. Because the viscosity of gasoil is more than the water viscosity, the adhesion of contaminated soil would be more than the uncontaminated soil and then, the liquid and plasticity limits of contaminated soils are more than the others. The uniaxial compressive strength results show that the undrained strength of contaminated soils would be decrease with increasing the gasoil content. This behavior is the result of sliding of the contaminated soil grains on each other.
The results of erodibility tests results are shown in Table 4. The erodibility would be increase with increasing the gasoil percentages. Also, it would be increase with steepness dips degrees. In compare to the uncontaminated soils, the maximum weight loss of the contaminated soil is 608.3 kg/m2.hr in 15% of gasoil and 40 degrees of steepness in L2 layer. The minimum weight loss of the contaminated soil is 13.33 kg/m2.hr in 0% of gasoil and 10 degrees of steepness in L3 layer. Thus, the assessment of gasoil effect on erodibility of soils is very important.
Table 3. Results of the engineering geological tests on the uncontaminated and contaminated soil samples
Layers Gasoil percentage Liquid limit (%) Plasticity limit (%) Plasticity Index (%) Maximum  dry unit  weight  (g/cm3) Optimum water content (%) Internal friction angle (ɸ) Cohesion (kPa) Uniaxial compressive strength (kPa)
L1 0% 49.64 40.65 8.99 1.65 22 4.6 7.4 18.4
7% 54 40.13 13.87 1.87 10.5 4.04 6.6 8.7
13% 55.67 43.71 11.95 1.88 8.5 3.26 3.7 7.8
19% 55 40.65 14.34 1.96 3 2.3 2.75 3.5
L2 0% 47.61 32.12 15.49 1.87 14 6.97 6 9.6
5% 64 40.39 23.61 2.08 9 5.73 5.5 7
10% 66 46.63 19.37 2.11 6 5.15 4 6.1
15% 68 49.09 18.91 2.14 3.5 4 2 1.25
L3 0% 42.6 27.14 15.46 1.62 22.3 2.6 10.7 22.6
7% 56 39.27 16.72 1.92 9.5 2.41 8.5 10.5
13% 57.18 41.66 15.51 2.01 6 2.17 7/3 7.8
19% 63 42 20.99 2.03 3 1.45 6.9 4.4
 
Table 4. Results of the uncontaminated and contaminated soils in different steepness*
Layer Gasoil percentage Dip of 10◦ Dip of 20◦ Dip of 30◦ Dip of 40◦
L1 0% 56.4 70.4 73.2 111.06
7% 149.6 178.8 248.4 202.53
13% 166.53 227.2 241.6 278.93
19% 227.86 256.66 419.86 334.66
L2 0% 30.8 102.53 156.53 317.73
5% 58.66 142.66 151.2 324.8
10% 74.93 168.66 244.53 365.73
15% 105.73 283.73 359.86 608.13
L3 0% 13.33 75.06 79.46 86.26
7% 55.2 98.53 78.13 81.06
13% 124.13 176.8 145.73 140.06
19% 196.4 279.46 200.93 210
Conclusion
1. According to the grain size analysis test results, all of three layers of soils around the Hamedan oil storage are SM with too much lime.
2. With increasing the gasoil, liquid and plasticity limits of three soil layers had increase trend. its trend in the middle layer is more than the others.
3. According to the erodibility results of contaminated soils, the weight loss of middle layer was more than the other layers because of the middle soil layer had lower percentages of lime.   
4. The gasoil causes decrease of soil strength and increase of weight losing. Thus, the uniaxial compressive strength and weight losing have reverse correlation.  
5. With increasing of the contamination, the cohesion and internal friction angle of soils would be decrease and then, the erodibility would be increase.
6. Maximum of erosion of contaminated soils was in 15 and 19 percentages of gasoil and it was three times more than that of uncontaminated soils.
7. The critical steepness of uncontaminated soil layers was 40 degrees for all three layers, but it was different for contaminated soils, 
8. Regarding to the location of Hamedan oil storages, the environmental risk of oil leakages and erodibility of contaminated soils are certain.  
./files/site1/files/132/5Extended_Abstracts.pdf
Hadiseh Mansouri1, Rassoul Ajalloeian, Alireza Nadimi,
Volume 13, Issue 3 (11-2019)
Abstract

Introduction                               
Generally, in engineering geology physical and mechanical properties of rocks are investigated in macroscopic scale, and less attention is paid to investigate the texture and microstructure developing in rock during deformation. Salt rock, as a best example of ductile rocks, has attracted the attention of many researchers. Compared to silicate rocks, salt rock exhibits extensively ductile behavior at even low temperature and pressure. In micro-tectonics, salt is important, because of it is useful as an analogue material for understanding the microstructural processes and textural development in silicate rocks. Deformed salt rock can display microstructures developed in silicate rocks at high pressures and temperatures. Regarding the similarity between microstructures of salt rock and silicate rocks, investigation of microstructure and deformation mechanism in salt rock can be helpful in understanding the main cause of the squeezing phenomenon in tunnels.
One of the effective factors on squeezing phenomenon is the structures and microstructures of rock. Rock mass classifications that contain rock mass structures are used in the predicting methods. But, so far, no attention has been paid to the role of rock microstructure in predicting the squeezing phenomenon.
This study is aimed to identify deformation mechanisms occurring in microscopic scale in rocks and lead to tunnel convergent in large scale. To achieve this goal, the microstructures in a naturally deformed Late Pre-Cambrian to Early Cambrian Hormuz salt rock from the active Deh Kuyeh salt fountain in Fars province were investigated using Electron Backscatter Diffraction (EBSD).
Materials and Methods
Deh Kuyeh salt diapir was located at about 27 km NE of Lar city. Salt samples were taken from top of the east and west glaciers (S1 and S2) and from the middle part of diapiric stem (sample S3). Raw samples were first cut dry into slabs (approximately 3´2 ´1 cm). Thin sections were prepared following the procedure of Schleder and Urai (2005) and Urai et al. (1987).
Halite crystallographic orientation data were collected using a Zeiss SIGMAVP FEGSEM. EBSD patterns were collected using an accelerating voltage of 30 kV, beam current of ~ 100 nA and a working distance of about 30 mm. Oxford instruments AZTEC software was used for data acquisition. EBSD large step size (50 mm) mapping was used to examine the overall microstructure in each sample. EBSD data were processed using HKL Channel 5 software.
Results and Discussion
All samples showed relatively similar microstructures. Samples comprise a small number of large grains in a matrix of smaller grains. Most grains were irregular in shape with lobate boundaries and internal distortion. Microstructural study revealed that the ductile flow of the salt was accommodated by dislocation creep and dynamic recrystallization. Salt grains show lattice distortion and a prevalence of low-angle boundaries that are evidence for dislocation creep and recovery processes. Misorientation analysis suggests that (110) <110> and (111) <110> slip systems are responsible for crystal plastic deformation of salt grains. Schmid factor analysis showed that stresses acting on inclined directions lead to the maximum activity of these slip systems.
The observed microstructures in the salt are comparable with the microstructures presented for schist samples from Himalaya region. The rock along Himalaya main trusts also showed evidence of dislocation creep and development of crystallographic preferred orientation. Hence, this article suggests that the rock type and its microstructures are the most important factors in occurrence of tunnel convergent.
Conclusions
This article proposes that deformation mechanisms occurring in micro-scale control the rock behavior in large scale. All rocks can behave as a ductile material depending on the temperature and pressure. In intrinsically ductile rocks like salt rock, presence of many active slip systems facilitates rock deformation under lower pressures and temperatures than silicate rocks. High tectonic stresses in shear zones lead to development of a strong shape preferred orientation and crystal preferred orientation in rocks. These microstructures facilitate rock deformation under stresses exiting in tunnels. It can be said that rock type and tectonic history of the area play the most important role in occurrence of squeezing phenomenon. Other factors such as current stress system in the area control deformation speed in tunnel. It seems investigating microstructures of rocks from tunnel route before and after excavation can be effective in identifying places with high possibility of squeezing.
Fahimeh Salehi Moteahd, Naser Hafezi Moghaddas, Golamreza Lashkaripour3, Maryam Dehghani4,
Volume 13, Issue 3 (11-2019)
Abstract

Introduction
Mashhad city, the second largest metropolis of Iran, is located in an arid and semi-arid region. Overexploitation of groundwater in Mashhad plain has caused up to 22.5-meter drop in the groundwater level from 1984 to 2013. The groundwater depletion in the unconsolidated aquifer has resulted in subsidence and cracks on the land surface. To determine the land subsidence rate map and the reasons for hot spot subsidence, the latest Envisat images of the ESA Space Agency's Archive for Mashhad plain were used. leveling and GPS data were combined with the radar interferometry results and the annual subsidence rate maps with high precision were obtained. Finally, the geology and soil texture maps of study area are compared to the land subsidence map.
Methods and results
To assess the land subsidence in Mashhad plain three methods of leveling, GPS and Insar are used. Leveling data are available in three profile of of Mashhad-Quchan (BCBD), Mashhad-Kalat (BDBE) and Mashhad-Sarakhs (BEBN) in two time interval of 1994-2003. The highest rates of subsidence in the BCBD, BDBE and BEBN lines are 7, 3.5 and 8.1 cm/year, respectively. Six permanent GPS stations have been installed in Mashhad plain, among them, NFRD, GOLM and TOUS have recorded the land subsidence, with the highest annual rate of 21.2 cm/year at TOUS Station. The third method applied to assess the history of land subsidence was InSAR radar interferometry which provided the extent and pattern of subsidence in all of the study area. For this, 23 images of the Envisat ASAR are processed during the 05/24/2010 to 06/30/2003 time period. The highest subsidence rate estimated by this method was 32 cm/year in the northwest of Mashhad. In general, two subsidence bowls, in the northwest and south east of Mashhad city are identified. Fig. 1 shows the annual subsidence rate map in Mashhad plain. Using the root-mean-square error (RMSE), the accuracy of the InSAR method was verified with GPS and leveling data.
Discussion
The rate and distribution of land subsidence in Mashhad plain are affected by geological factors such as soil texture, deposit thickness, geological structures and groundwater drawdown. The geological and geophysical studies and exploratory drilling results in the Mashhad Plain indicate that the bedrock morphology is very rough. The bedrock outcrops in some places while in some other places covered by more than 300 meters alluvial deposits. Generally, by distance from the mountain, alluvium thickness and as a result the likelihood of subsidence would be increased. Mashhad plain is surrounded by the active and quaternary faults in the north and south edges. In the north of Mashhad plain Marly bedrock is uplifted by Tous fault and outcropped in the north of fault. In the south of Mashhad two normal faults have resulted to the increase of alluvium thickness in south and central of Mashhad plain. The change of river pathway also let to deposition of a sequence of the fine-grained and coarse-grained soils in central of plain between Toos and southern branch of South Mashhad fault (F2).
used to draw the cross section
In order to evaluate the subsurface conditions and its effect on the land subsidence, the soil texture are studied using the deep water wells and piezometers log (Figure 2). Fig. 3 shows the longitudinal section (northwest to southeast) of the area. As it can be observed, the soil texture includes of alternation of fine and coarse grains layers (Figs. 4). In this condition, sandy soils help to shortening the drain path of clayey layers and leads to acceleration of the consolidation. The average rate of annual subsidence in the area is 14 cm for one meter of drop in the groundwater level.
Nowadays, in the urban area, due to the urban sewage waters, there is a rising of groundwater level.  Therefore, no land subsidence has occurred in the central parts of the city. It is expected by completion of urban sewage network about 62 million cubic meters of sewage water will be eliminated from the aquifer recharge, which will cause a notable drop in the groundwater level and prominent land subsidence in specific area of the city. Considering the geological conditions and the operation of the existing faults, it is expected that in the case of groundwater drop, no significant subsidence will occur in south of the F2 fault, due to the decrease in the alluvium thickness and to the coarse texture of the soil. But in the northern and northeastern parts of the city, which are located between F2 and the Tous faults, high rate of land subsidence is expected.
Figure 4: The cross section of soil texture and the annual average rate of land subsidence and groundwater level drop
Conclusions
Using the radar interferometry processing, the highest annual rate of subsidence in Mashhad plain is about 32 cm/year. Land subsidence in Mashhad plain has an increasing trend and the geological conditions have a critical role in the subsidence rate and its pattern. Generally, soil texture near the mountain area in South is coarse and grain size decreases toward the center of the plain. But because the outcrop of Marly formation in the north slopes, soil texture is mainly fine grains. In the center of Mashhad plain soil texture constituted of fine and coarse grains which are converted together as inter fingering facieses, which have a critical role in decreasing of the consolidation time and increasing the land subsidence rate. It is predicted by complimenting of the urban wastewater network, the groundwater level will be dropped in the city area and the northwest and southeast subsidence ellipsoids which already can be seen will be connected together. Therefore, the area between F2 and Toos faults, will be shown the highest rate of subsidence, due to high thickness and fine-grained soil texture../files/site1/files/133/5Extended_Abstracts.pdf
Ahmad Khorsandi Aghai,
Volume 13, Issue 3 (11-2019)
Abstract

In this research, the relationship and reaction between quantitative and qualitative Shahre Rye spring’s karstic water (Cheshme Ali) and spring’s adjacent alluvium aquifer have been considered to determine the relationship between alluvial and karstic aquifers and to study the connections between the two different groundwater environments. The results of the present research suggest geological conditions, hydrogeology and different hydraulic condition between Cheshme Ali karstic water with its surrounding alluvium’s aquifer. However the study results show the lack of a hydraulic connection between the two different groundwater environments (karst and alluvium) that are formed by north Rye fault.
Introduction
There have been many studies in the field of the present research, some of which are mentioned below.
(Tobarov, 1966). The N. Massei et al. (2002). (Robert E. 2005). (Ezatollah Raeisi 2008). (Cholami et al. 2008). (N. Goldscheider and C. Neukum 2010). (Dusan Polomcic et al. 2013).
The aim of this research is to identify the hydraulic relation between the alluvial aquifer and the karstic aquifer of the Cheshme Ali, during which the geographic, topographic and geologic situations and the changes in water discharge of Cheshme Ali and the changes in water table of the observation wells of the aquifer to the north of the spring have been reviewed simultaneously.
The results indicate a lack of relation between the alluvial aquifer and the karstic aquifer of the Cheshme Ali in Shahre Rye.
The general specification of the study area
The surface area of Shahre Rye equals to 2,293 km2 and the city is limited to the north by Tehran, to the south by Qom, to the east by Varamin and Pakdasht and to the west by Islamshahr, Robat Karim and Zarandieh (Fig. 1). The Cheshme Ali is located in the eastern parts of the city and southeast of Tehran. From a geographic point of view, the Cheshme Ali spring is situated in the southern part of the Cheshme Ali hill, and after leaving the ground, the spring's water flows to the south of Shahre Rye.
Methodology
1. Topography
The topographic specifications of the Cheshme Ali and its surrounding are as follows:
The highest points of the Cheshme Ali's surroundings are the Sepaye Hills with an altitude of 2,085 m above the sea, which are located to the east of Cheshme Ali. The height of Bibi Shahbanoo hill to the southeast of Cheshme Ali is about 1,498 m. The altitude of the northern hill of Cheshme Ali, where the spring is located is about 1,077 m and the lower sloped land surrounding it have an altitude of 1,072 m above the sea. This means that the opening of the Cheshme Ali spring is located at 1,072 m above the sea.
2. Geology
From the geological point of view, the existing units around Cheshme Ali of Shahre Rye consist of Precambrian, Mesozoic and Cenozoic sediments and rocks as geological specifications of Cheshme Ali and its surroundings are shown in Fig. 2.
From the structural geology, and geological specifications two geological sections AB, CD Were prepared and presented in Figure 3.
The Figure 3 shows, Cheshme Ali spring appears from Cretaceous thick layered limestone (Tizkooh formation Kt1) and the shahre Rye fault mechanism on either side of layering. However the water flow of cheshme Ali is nearly east – westerly after spring’s openings (A) and then spring water flow direction is to the south (Fig. 4).
The hydrogeology of the spring and the wells
1. The Cheshme Ali in Shahre Rye is a karstic spring, with few hydrogeological specifications that are concluded from the result of geological and hydrogeological review and analysis of the spring’s water quality.                                                           
Therefore, the karstic Cheshme Ali spring has a varied range of discharge which is from medium (25 to 100%) to high (>100%). Moreover in the curves of the spring’s discharge and simultaneous rainfall, shown in figure 5, the peak volume of water discharge of the spring corresponds fully with the peak rainfall, underlining the influence of simultaneous rainfall on the spring.                
The study of the hydrographic makeup of the spring (curve 2) shows the difference in the period between the upward curve (seven and a half months) and the downward curve (four and a half months) underlining the lower permeability of the spring’s intake area versus the grounds conducting spring water to the openings.
2. The hydrogeology of the surrounding wells:
For the purpose of studying the fluctuation of water tables of the observation wells around the spring and in its adjacent alluvial aquifer, the isobaths maps of groundwater level and groundwater table of the spring’s surrounding areas were drawn ( Fig.6). The level of groundwater table to the north of spring is 5.9 m and 6.6 m to the south of it, while the spring water is at ground level. In order to have a better understanding of the potentials of groundwater table in Shahre Rye’s Cheshme Ali and its surrounding environments from south to north, the potential profile is provided in figure 7 using the potential figures of witness wells and the Cheshme Ali spring. In the potential profile, the groundwater level of the Cheshme Ali is higher than the groundwater potential level of the witness wells, which seems to suggest the recharge of the plain by the spring.
The review of the groundwater quality in wells and the Cheshme Ali spring
The groundwater quality characters of the Cheshme Ali and the wells to the north and south of the spring are presented in table 2,that shows three differences and similarities in the results of the chemical analysis of water from Cheshme Ali and from wells located to the north and the south of the spring. The difference between the chemical composition of water from the spring and the chemical composition of the well located to the north is considerably more than the difference between the chemical compositions of the spring and the well located to the south.
Summary and conclusion
Based on the geological studies of this research, the Cheshme Ali spring in Shahre Rye appears from the Karstic Tizkooh formation (Fig. 2) and the geological structure shows a northerly direction for the slopes of the layers in Tizkooh formation, and an east-westerly direction for the appearance of the spring water (Fig. 3 and Fig. 9). The spring’s flow is disseminated and the spring is of Karstic - fault type (table 1). The discharge of Cheshme Ali corresponds entirely to rainfall and is influenced a lot by it (Fig. 5). The condition of groundwater table of the well and the spring (Fig. 6, A) and the water level potential of the spring and its surrounding wells underlines the existence of two different hydraulic environments (Fig. 6, B). Moreover, from the aspect of potential groundwater column, there is a large difference between the groundwater table potential of the spring and the potentials of the two wells to the north and south of the spring (Fig. 7and8). From a qualitative aspect, the quality of spring water differs greatly from the quality of water from the wells located to the north and south (table 2).
The results of this research are as follows:
1. The study of geologic, structural geology and the geological section shows the water in the Cheshme Ali of Shahre Rye is originating from the Karstic formation of Tizkooh that layers sloping are to the north, the spring water appears from the site of the Rye fault and then flows to the west.
2. The studies have proven that Cheshme Ali to be a Karstic – fault spring with disseminated flow, whose discharge is influenced by rainfall and condition of groundwater level and the table which underlines the alluvial aquifer shows lack of relation between two alluvial and karstic aquifers.
3. The water quality analyses show a great difference between the specifications of the spring water and its surrounding wells groundwater.
4- The north Rye fault mechanism are formed two different groundwater environment ( Karstic and alluvium) and however different groundwater conditions between north and south of alluvium.
Hamed Rezaei,
Volume 13, Issue 3 (11-2019)
Abstract

Introduction
The dispersivity phenomenon occurs due to the dissolution of some of the ions in clay soils or against the shear stress of normal water flow in cohesion-less soils. Water surface flows in low slopes cause surface erosion of dispersive soils. Dispersivity in the soil starts from a point and gradually expands; the starting point can be the holes from the activity of the animals, the existing cracks or the growth path of the roots of the plants. There is a lot of field evidence to recognize the dispersivity of the loess soils. In field investigations, soil dispersivity can be detected according to the following parameters: geological origin of the loess soil, mineralogical composition, gradation, drainage pattern, slaking of agglomerates, specific morphology, high permeability, geographical area (length and width relative to origin), soil color, relationship between slope and soil erosion, precipitation, erosion of column cracks, heeling, mud flowing runoff and the presence of salt crystals in loess soils. In terms of sedimentological characteristics and engineering geological properties, Golestan loesses have been dispersed in three areas 1, 2 and 3, which are consistent with the loesses of clay, silt, and sand types, respectively.
Material and methods
Loess soils in three regions of east and northeast of Golestan province were sampled. Sampling was conducted in two forms of wax-coated agglomerates and metallic cylindrical tubes. Depth of sampling follows the foundation of the buildings located on the Mehr Housing site and the Cheshme Lee village, varying from 0.5 to 2 meters. On the path of the Beqqeje Bala village, sampling was carried out from the path trench. After transferring to the laboratory, samples were subjected to gradation testing, Atterberg limits test to determine the unit weight of the volume and density.
The pinhole test was done on samples with the unit weight of normal volume (gn) and maximum volume (gdmax) and its rate of dispersion was determined. The research background, field evidence and the results of laboratory experiments indicate the dispersion of soil sampling areas. The results show that soil compaction reduces the severity of dispersion and decreases the flow rate, so that the flow rate has decreased in the Maravehtapeh sample by 38%, in the Cheshmeli sample by 13% and in the Beqqeje Bala sample by 43%. Compaction cannot eliminate the dispersion of soil. Adding nanoclay decreases the severity of soil dispersion and eliminates its dispersion properties in most cases.
In order to evaluate the effect of nanoclay on severity and to decrease the dispersion property of soil with ratios of 0.5, 1, 2, 3, 4 and 5 wt%, of Montmorillonite Nanoclay was added.
The nanoclay used in the present research was selected from the Sigma-Aldrich America Company called montmorillonite nanoclay and was purchased from its domestic representative, i.e. Iranian Nanomaterials Pioneers Company. The product has a density of 300 to 370 kilograms per cubic meter and a particle size of between 1 and 2 nm. The specific surface area of the nanoparticle is about 250 square meters per gram. Its color in normal light and in 1 to 2% moisture is yellow to yellowish buff.
Results and discussion
The rate of dispersion of samples with nanoclay was measured in Pinhole Test Apparatus. Also, the method of mixing nanoclay with dispersive soil shows different behaviors in severity of dispersion and its reduction. Given that the specific surface of nanoclay is high and this property can include the whole surface of soil grains as a sticky coating and increase soil cohesion, the mixing method is practically one of the most important steps in examining the effect of nanoclay on soil stabilization. At ratios of 0.5, 1, 2, 3, 4 and 5 wt% of nanoclay, nanoclay was mixed with soils of sampling regions by four methods:
In the method A, they were completely mixed with the preparation of a homogeneous mud from soil and nanoclay via an electric mixer.
In the method B, mixing of loess soil with nanoclay was performed in optimum water content.
In the method C, mixing of loess soil with nanoclay was conducted in the form of dough by hand mixer. In the method D, mixing of loess soil with nanoclay was carried out in the form of vibration dry by grading sieve shaker.
After mixing with nanoclay in the desired method (four methods A, B, C, D), the samples were first stored in sealed plastic containers for 24 hours. Then, the samples containing nanoclay were reconstructed in cylindrical mold of the pinhole device with the unit weight of maximum dry volume and moisture of two percent higher than the optimum moisture content and a hole was created in the middle of it. The samples remained in this position for 24 hours, and then the test was performed. Testing was carried out on each sample according to the standard D4647-93, and flow rate reading was done over a period of two minutes to 18 minutes.
Conclusion
The conclusion of this study shows that the three loess samples taken have a dispersivity potential and the flow rate is low in the unit weight of maximum volume, but the dispersivity potential does not eliminate. Adding nanoclay with any weight ratio reduces the flow rate and eliminates the soil dispersivity potential.
The results of this survey showed that 1% nanoclay weight ratio is technically and economically the most appropriate mixing ratio. With this weight ratio, the method of preparing homogeneous mud with an electric mixer (method A) produces the lowest flow rate, so that the flow rate from 1.3 ml per second in pure soil to 0.3 ml per second in the soil containing nanoclay is reduced by 50 mm. Therefore, it can be said that this method is more suitable, but it is not operationally efficient and the method B is more appropriate. In the method B, the flow rate reaches from 1.3 to 0.55 ml per second.
Aref Alipour, Mojtaba Mokhtarian,
Volume 13, Issue 4 (12-2019)
Abstract

Introduction
The main objective of this contribution is to focus on the portion of the comminution process which deals with the prediction of the energy consumption due to the comminution portion of the milling processes.
The comminution energy in mineral processing and cement industry is usually determined by empirical Bond Work Index (BWI), regardless of the mechanical properties of a rock. The BWI is a measure of ore resistance against grinding and is determined by using the Bond grindability test. Determining the BWI value is quite complicated and time consuming. Its value constitutes ore characteristic and is used for industrial commination plants designing and optimization. The BWI is defined as the calculated specific energy (kW h/t) applied in reducing material of infinite particle size to 80% passing 100 µm. The higher the value for BWI, the more energy is required to grind a material in a ball mill. The energy consumed in the process of comminution depends on both the mechanism of comminution and the mechanical properties of the materials being ground. It is interesting to study the effect of the essential ones of these properties on the energy efficiency of grinding process.
Material and methods
Several attempts have been made to obtain and optimize the comminution energy. An efficient Response Surface Method, (RSM)-based method for the BWI approximate value determination, which is based on physico-mechanical tests, is presented in this paper.
BWI and some physico-mechanical tests on 8 typical rock samples and its correlation are studied; it would be beneficial to examine this relation based on physical concept. The database including Uniaxial Compressive Strength (UCS), Abrasion (AT), Hardness (HT) and Modulus of Elasticity (ME) are assembled by collecting data from Haffez experiments.
Results and discussion
The determination of the BWI from RSM- based multivariate model is almost matched with measured Bond’s work index. As a result of analysis the best equation obtained from RSM-based model is formulized in Equation 1:
                                      (1)
Standard statistical evaluation criteria are used to evaluate the performances of predictive models.
Conclusion
The performance of the estimator models can be controlled by R2, VAF, RMSE, MAPE, VARE and MEDAE. The RSM- based model with higher VAF as well as lower RMSE, MAPE, VARE, MEDAE shows better performance in comparison to the Haffez single-variable models. AT and ME have the greatest effect on the value of BWI; and also HT has the least impact../files/site1/files/134/6.pdf
Mahnaz Firuzi, Mohammad Hossein Ghobadi, Ali Noorzad, Ehsan Dadashi3,
Volume 13, Issue 5 (12-2019)
Abstract

Slope stability could be a major concern during the construction of infrastructures. This study is focused to analyze the slope stability of Manjil landslide that was located 41+400 to 42+200 km along Qazvin-Rasht freeway, Iran. The Manjil landslide, which had 168 m long and approximately 214 m wide, was occurred due to inappropriate cutting in June 2013 and led to destructive and closure of freeway. Slope stability analysis was carried out using a finite element shear strength reduction method (FE-SRM). The PHASE2D program was utilized in order to model the slope cutting and stability of landslide. Slope angle was flatted with 3H:2V geometry and stabilized with piling. The results indicated safety factors of 1.95 and 1.17 in the static and pseudo-static states, respectively, while the maximum bending moment with single pile (SP) in the pseudo-static state was 5.69 MN. Maximum bending moment of the pile around the slip surface was significantly large and more than the bending moment capacity of the pile. Due to the large bending moment on the pile, pile-to-pile cap connections (two pile group: 2PG) should be designed at the toe of the slope. The obtained results showed reduction of this parameter to 2.48 MN. Thus, it can be concluded that 2PG is a suitable stabilization method for the Manjil landslide.
Mohammad Hossein Ghobadi, Mehrdad Amiri, Farhad Aliani,
Volume 14, Issue 1 (5-2020)
Abstract

Because of the diversity in petrography, peridotites have variable physical and mechanical properties. For this reason, knowledge of resistance properties and their deformation will help with the prediction of engineering behavior of these rocks. Due to the large spread of igneous rocks, especially peridotite, in Zagros, northeastern and central Iran, special attention has been paid to their petrographic, physical and mechanical characteristics. The construction of the structure within or on the peridotites and the choice for the purpose of the stone borrow depends on the recognition of its engineering geology characteristics. In this paper, in addition to the field and laboratory study, the geological characteristics of peridotite engineering has been investigated.                                    
Material and methods                    
In order to study the geological characteristics of the peridotites of Harsin region, 15 suitable blocks were selected and transferred to the laboratory. Accordingly, from collected rock samples, 150 cylindrical cores of diameter 54 mm were prepared and physical and mechanical tests were performed according to (ISRM, 2007) and (ASTM, 2001) guidelines. In this research, after sampling of the study area and preparing the core for the lithological characteristics of the samples by providing thin sections of them with polarizing microscopy was studied.
Results and discussion
By considering the results of laboratory tests and analysis from Harsin peridotites in Kermanshah province, we can acclaim that with increasing the percentage of minerals in olivine and pyroxene in rock, the strength was decreased and the levels weaknesses, which is due to the weak structure of the mineral-olivine and pyroxene. According to the physical properties test and Anon classification, the porosity percentage in porosity percentage is low and as a result the amount of water absorption index is low. Based on the Gamble classification, all peridotites are very resistant to durability and based on the Franklin and Chandra classification, all samples are extremely resistant. The results of this study showed that the single axial compressive strength, elasticity modulus, point load index and tensile strength were decreased with an increase in humidity content of peridotite samples. This is due to the fact that with the increase of humidity pore pressure of water increases. According to the Anon classification, the peridotites are very high in terms of the length of the longitudinal passage through the rock. The highest compliance between the Brazilian Tensile strength test (BTS) and Schmidt hammer (SHV) was achieved in the dry condition and the determination coefficient (R2) equals to 0.95 was obtained. Also there is an acceptable relation between the Brazilian Tensile Strength Test (BTS) and the dry volume unit weight (γd) with the determination coefficient (R2) of 0.93. In addition, there is an admissible relationship between durability test and single-axial compressive strength, with a coefficient determination (R2) of 0.94. Regarding the obtained regressions in this study, the physical and mechanical properties show good agreement and most of the equations have an acceptable coefficient determination.
,
Volume 14, Issue 1 (5-2020)
Abstract

Introduction
Drilling has various methods that from different aspects such as crushing mechanism, type of used energy etc., is divided to several types containing hand held drilling, percussive drilling, cable-tool drilling, rotary (or circular) drilling, percussive-rotary drilling and core drilling. Unlike the direct circulation drilling system (DC) in the reverse circulation drilling system (RC), the drilling fluid moves the annulus between borehole wall and the drilling pipe and comes back with the drilled pieces along inside the drilling pipe. The exploratory drilling system of RC by conducting powder samples with high purity and fast drilling rate, is a great help to the velocity and accurate of exploration of ore deposits. Samples produced in this method are in the form of soil and rock powdered and rock fragments of the drilled part, which may be dry or with little moisture. The air flow inside the cycle causes the collected powder sample to be often dry but sometimes is wet due to groundwater or drilling mud. Drilling is one of the most costly mining processes. Therefore, the most important goal in drilling engineering is to reduce costs, and the best possible decision to optimize the cost of drilling is to choose the best possible drilling method. Based on the field data, cost of drilling for each meter of a soft rock (e.g. travertine) by core drilling and direct drilling methods are about 3.3 and 1.2 times of the RC method, respectively. Also the cost of drilling, for each meter of a hard rock (e.g. granite) by core drilling and direct drilling methods are about 2.6 and 1.3 times of the RC method, respectively.
Materials and methods
In the present research, reverse circulation drilling (RC) has been compared with other important, common and practical drilling methods, such as direct circulation and core drilling methods in terms of various criteria containing drilling (time) rate, price (cost), type and quality of acquired samples and performance efficiency of drilling. Also, as a field study in this research, deep drilled boreholes with RC and core drilling methods in the gold mine of Khomein-Akhtarchi located in the Markazi province, were investigated and compared from different aspects. At the end, the ability to select the most appropriate drilling method among the variety of methods was studied. The study region is located at 25 km northeast of Khomein city in the Markazi province. This region consists of two exploration areas of Zarmadan-Akhtaran1 with the area of 13.21 square kilometers and Zarmadan-Akhtaran2 with the area of 2.85 square kilometers. Access to the Akhtarchi gold region is possible through the Khomein-Shahabiyeh (Goldsat)-Mahallat road. In the mining region, the Permian rock complexes include dolomite, dolomitic limestone from brown to dark gray, black Irony sandstone and white to milky limestone known as pds, pdl and pl units in the geological maps.
In the studied region, several deep boreholes, most of them by RC and some of them by core drilling methods have been drilled. In general, by now in the Akhtarchi gold zone in the Zarmadan-Akhtaran2 area 54 powder boreholes have been drilled through RC method called by RC1 to RC54. Also, there are 25 core drilling boreholes, 18 boreholes called by BH1 to BH18 in the Zarmadan-Akhtaran1 area and 5 boreholes called by BH1 to BH5 in the Zarmadan-Akhtaran2 area. During drilling operations, Permian and Cretaceous rock units have been encountered. The details of drilling via RC method for 4 boreholes with numbers 50, 51, 53 and 54 have been accurately taken. The measured drilling times were obtained from drilling personnel of the mine through the questionnaire which they were weighted mean if needed.
Results and discussion
The average drilling time for each meter of rock in boreholes 53 and 54 is 2:12 and 2:54 minutes, respectively. In both cases, the time duration is very short and this feature is one of the advantages of the RC drilling method. The longer average duration of drilling for each meter of rock in the borehole 54 than 53, is due to the depth of the borehole 54 and the hammer problem of the drilling machine during the drilling this borehole. In Table 1, the average duration of drilling operation per meter of rock in the Akhtarchi gold mine is given according to the type of rock (lithology) at definite depth intervals, on the basis of field studies. According to this table data, the duration of the drilling for each meter of rock in the greater depths increases that the reasons for increasing the duration of drilling for each meter of rock in greater depths are the difficulty of drilling due to the increasing length of rig, the reduction of transient energy to the bit, the probability of greater borehole declination, compaction increasing and as a result increasing the strength of rocks and more hydrostatic and lithostatic pressures in the great depths meanwhile at a great depth, the probability of capturing the drilling rig is too high. Also the cost (the time price) of drilling per meter of rock in this mine based on the dip and depth of drilling is about 1300 to 2000 thousand Rials by the RC method, against 2620 to 4250 thousand Rials by the core drilling method.
The results of the present research indicate that the RC drilling in comparison with other drilling methods, especially conventional and applied ones in terms of drilling costs and drilling rate (time) is highly desirable while is desirable regarding depth of drilling, the type and quality of the acquired samples and the overall efficiency of drilling performance. Although the core drilling method with the ability to drill very deep boreholes obtaining cores in terms of the type and quality of the acquired samples, as well as the depth of the drilling is the most desirable, but for exploration drilling (especially in the detailed exploration stages), deposits with low-grade and very little mineral indices (like gold mine of Khomein-Akhtarchi), and hence the large sample sizes are needed, employing RC drilling method having comparative advantages is economic.
Conclusion
Regarding the use of RC drilling method in the case study, the gold mine of Khomein-Akhtarchi, it was found that the RC method compared to the core drilling method, in terms of the duration of drilling operations or the speed of advance (the rate of penetration in the rock), drilling costs and efficiency of performance is desirable. Also, according to the type of mineral deposit (gold type), which is low-grade and the indices of the mineral are very low, therefore the large sample sizes are needed, thus, in terms of the type of obtained samples, employing RC drilling method in this case, is accounted a very important advantage related to the DC method (in terms of accuracy) and core drilling method (in terms of cost). The results of this research are useful for all users of drilling operations, including drilling engineers and technicians, engineering geology and geotechnical practitioners, mineral exploration engineers, groundwater aquifers and hydrocarbon reserves (oil and gas) to choose the optimal drilling method under different environmental and economic conditions based on criteria such as the purpose of drilling operations, costs, progress rate, type and quality of the yielded samples and the efficiency of drilling operation. Also, the use of RC drilling method has the advantages over the other drilling methods to be suggested for exploration of low-grade deposits such as gold, silver and copper, especially in the final stages such as detailed and mining exploration.
 
Mehdi Jalili, Hosein Saeedirad, Mohammad Javad Shabani,
Volume 14, Issue 2 (8-2020)
Abstract

Introduction
Dispersive soils are problematic and they cause a great many of local damages and destructions in hydraulic structures such as dikes and irrigation channels. The correct identification and recognition of divergence are fundamental measures taken in line with preventing the early destruction of the hydraulic structures. The soil improvement using lime, especially in clayey soils (CL), brings about an increase in the optimum moisture percentage, reduction of the maximum dry unit weight, reduction of swelling potential, increase in the strength and elasticity module. The effect of lime on soil can be classified into two groups, namely short and long-term stabilization. Raise of the soil’s workability is counted amongst the short-term modification measures and it is the most important factor in the early improvement stages. The increase in the strength and stability can be considered as the lime utilization on long-term results occurring during curing and afterwards. Also, according to the reports, swelling and damages occur in the lime-stabilized soil containing sulfate. The effective role of the iron furnace slag has been well recognized in increasing the strength against sulfates and corrosive environment conditions of the mortar containing lime and sulfates.
Material and methods
Adding the slag products of the melting furnaces and lime is a method used to stabilize dispersive soils. The present study makes use of a mixture of clay featuring low plasticity with 1% and 2% lime and slag, for 0.5%, 1%, 3% and 5% of the weight, to improve dispersivity, shear strength and plasticity. The samples were kept in constant temperature and humidity for a day and then were subjected to direct shear, uniaxial strength and pinhole tests.
Results and discussion
It was observed based on pinhole experiment of the initial dispersive soil sample, denoted as D1, that the sample, shown by ND2, containing lime, for 2% of the weight, and slag, for 5% of the weight, turned out to have become non-divergent. The results of the direct shear test showed that the adhesion coefficient of the slag-free samples stabilized using 1% lime has been increased from 0.238 kg/cm2 to, respectively, 0.251 kg/cm2, 0.373 kg/cm2, 0.41 kg/cm2 and 0.48 kg/cm2  per every 0.5%, 1%, 3% and 5% slag added. The adhesion of the samples stabilized using 2% lime as determined in the direct shear experiment were 0.615 kg/cm2, 0.671 kg/cm2, 0.724kg/cm2 and 0.757kg/cm2 per every 0.5%, 1%, 3% and 5% slag added. Also, the internal friction angle of the samples stabilized using 1% lime was found an increase from 14.3° for slag-free samples to 18.11°, 21.3°, 21.86° and 21.92° per every 0.5%, 1%, 3% and 5% added slag. As for the samples stabilized using 2% lime, the internal friction angles were found in direct shear test equal to 23.15°, 23.53°, 23.76° and 24.12° per every 0.5%, 1%, 3% and 5% slag added. The uniaxial strength of the slag-free samples stabilized using 1% lime was found an increase  from 1.0014 kg/cm2 to, respectively, 1.0616 kg/cm2, 1.0782 kg/cm2, 1.2127 kg/cm2 and 1.2246 kg/cm2 per every 0.5%, 1%, 3% and 5% slag added. The uniaxial strength rates has been determined in the direct shear test of the samples stabilized using 2% lime were 1.1367 kg/cm2, 1.1885 kg/cm2, 1.2322 kg/cm2 and 1.2872 kg/cm2 per every 0.5%, 1%, 3% and 5% slag added. The amount of axial strain of the slag free samples stabilized using 1% lime was found decreased from 9.6842% to, respectively, 9.3333%, 9.2683%, 9.6364% and 8.4444% per every 0.5%, 1%, 3% and 5% slag added. Moreover, the axial strain amounts obtained for the samples stabilized using 2% lime were 7.7333 kg/cm2, 7.6316 kg/cm2, 7.1517 kg/cm2 and 4.7619 kg/cm2 per every 0.5%, 1%, 3% and 5% slag added.
The study results indicate that slag and lime have the capacity of improving the studied soil’s dispersivity. Furthermore, it was figured out that adding slag to the soil causes an increase in the soil strength and improves the shear strength parameters. It can be stated according to the observed results that the use of slag, a byproduct of iron smelting industry, as a substitute for a given percentage of lime is effective on the reduction of the clay soil’s divergence potential. The results of the experiments carried out to determine Atterberg limits are suggestive of the idea that the increase in the slag and lime fractions brings about a decrease in the liquid limit and plasticity and improves the plasticity properties of the soil. The reason why the soil plasticity has been reduced after being mixed with lime and slag is the cationic exchange and coarsening of the soil texture. Addition of lime to the soil causes an increase in the plasticity limit and a reduction in the liquid limit. Therefore, the plasticity index is decreased and the plasticity characteristics of the soil are improved. Adding 1% lime to the dispersive soil leads to small reduction of the liquid limit from 32.43% to 31.73%, a small increase in the plasticity limit from 13.42% to 14.66% and a insignificant decrease in the plasticity index from 19.01% to 17.07%.
Bakhtiar Fezizadeh, Meysam Soltani ,
Volume 14, Issue 2 (8-2020)
Abstract

Introduction
Landslide is known as one of major natural hazards. Landslide susceptibility mapping is known as efficient approach to mitigate the future hazard and reduce the impact of landslide hazards. The main objective of this research is to apply GIS spatial decision making systems for landslide hazard mapping in the 5th segment of Ardebil-Mianeh railroad. Evaluation of the landslide criteria mapping and their relevancy for landslide hazard can be also considered. To achieve the research objectives, an integrated approach of Fuzzy-Analytic Hierarchy Process (AHP), Fooler Hierarchical Triangle and Fuzzy logic methods were employed in GIS Environment.
Material and methods
Within this research, we also aimed to apply GIS spatial decision making systems and in particular GIS multi criteria decision analysis which are available in Arc GIS and Idrisi softwares. We have identified 8 casual factors (including: density of vegetation, land use, faults desistance, distance from rivers, distance from roads, slope, aspect, geology) based on literature review. Accordingly, these layers were prepared in GIS dataset by means of applying all GIS ready, editing and topology steps. The criterion weighting was established based F-AHP approach. The criteria weights was derived and rank of each criterion was obtained. Accordingly, the landslide susceptible zones were identified using GIS-MCDA approaches.
Results and discussion
Finally the functionality of each method was validated against known landslide locations. This step was applied to identify most efficient method for landslide mapping. According to the results and based on the values derived from Qs, P, and AUC, the accuracy of fuzzy method was accordingly about 0.33, 0.74 and 0.76, respectively. In context of Fuzz-AHP the accuracy of 1.08, 0.88 and 0.94 were obtained. While, the accuracy of Fooler Hierarchical Triangle were obtained 0.78, 0.84 and 0.91, accordingly.
Conclusion
As results indicated integration of Fuzzy-AHP represented more accurate results. Results of this research are great of important for future research in context of methodological issues for GIScience by means of identifying most efficient methods and techniques for variety of applications such landslide mapping, suitability assessment, site selection and in all for any GIS-MCDA application.

Mohammadkazem Amiri, Gholam Reza Lashkaripur, Siavash Ghabezloo, Naser Hafezimoghadas, Mojtaba Heidaritajri,
Volume 14, Issue 3 (11-2020)
Abstract

Introduction
CO2 injection in deep geological formations, such as depleted oil and gas reservoirs, in addition to the environmental benefits, is one of the effective method for enhanced oil recovery (EOR) as tertiary EOR. Presence of reservoirs with a pressure drop which require injection of gas in the southwest of Iran and having the technical and environmental effects of CO2 injection have created a huge potential for CO2 injection to EOR in this region. In the first step, to perform CO2-EOR, the geomechanical assessment is needed to find out pore pressure, in-situ stress magnitudes and orientations and fractures and faults conditions. In this paper, the initial in-situ pore pressure is predicted using modified Eaton method for 47 wells in the length of the study field and calibrated using repeat formation test and mud pressure data. In-situ stress was obtained by the poroelastic method for 47 wells in the length of the study field and calibrated using leak off test and extended leak off test. Then, the orientation of in-situ stresses is obtained based on image logs. Hydraulical and mechanical activities of fractures and faults were performed by critically-stressed-fault hypothesis
Material and Methods
In this paper, the initial pore pressure is calculated using modified Eaton method and other corrections that are proposed by Azadpour et al. (2015). The estimated initial pore pressure is validated using mud weight pressure (Pmw) and repeat formation tester (RFT) data. In-situ stresses are composed of three orthogonal principal stresses, vertical stress (SV), maximum horizontal stress (SH), and minimum horizontal stress (Sh) with specific magnitude and orientations. The magnitude of SV is calculated by integration of rock densities from the surface to the depth of interest. The poroelastic horizontal strain model is used to determine the magnitudes of the SH and Sh. Then, the estimated minimum horizontal stress from poroelastic horizontal strain model is validated against direct measurements of LOT and XLOT tests. The orientation of breakouts was determined based on compressively stressed zones observed in the UBI log and using Caliper and Bit Size (BS) logs. The hole elongates perpendicular to the SH and breakouts develop at the azimuth of Sh. Fractures and faults reactivation analyses are very important, they can potentially propagate upwards into the lower caprock and further through the upper caprock due to CO2 injection. Fractures and faults identification were performed based on image logs. Based on performed seismic interpretations by NISOC (National Iranian South Oil Company), 15 faults have been detected in the field. Fractures and faults conductivity and activity in the current stress filed affect on fluid flow and mechanical stability or instability of the CO2 injection site. Critically stressed fault hypothesis, introduced by Barton et al. (1995), states that in a formation with fractures and faults at different angles to the current stress field, the conductivity of fluids through their apertures are controlled by the interplay of principal stress orientations and fracture or fault directions. Hence, conductive and critically stressed fractures and faults in the current stress field were evaluated using critically stressed fault hypothesis. Fractures and faults are plotted in normalized 3D Mohr diagrams (normalized by the vertical stress), therefore conductive and critically stressed fractures and faults were determined.
Results and discussions
The maximum distribution of initial pore pressure was 20-25 MPa in the field and the average of initial pore pressure was 25 MPa in the field. Unlike the World Stress Map, the stress regime is normal in the reservoir. Because the Kazeroon fault and Dezful Embayment act as a strike-slip tensional basin, resulting in the subsidence of Dezful compared with other regions. The frequency distribution of calculated in-situ stress in 47 studied wells in the length of the field has been presented. The maximum frequency distribution of SV, SH and Sh were between 60-70, 50-60 and 30-40 MPa, respectively. A large amount of fracturing is observed in 20-25 m below the caprock. Based on the continuity of their low amplitude traces on the acoustic amplitude image of UBI, fractures are classified into 4 classes: discontinuous-open, continuous-open, possible-open and closed fractures. OBMI and UBI image logs processing were performed in 7 wells. As can be seen from the image log, and caliper analysis the most dominant strike of SH around the well is 27 and Sh strike is 117◦. These have two dominant orientation, some faults are along the strike of the Zagros fold-thrust belt (NW-SE) and the others are perpendicular to the Zagros fold-thrust belt strike (NE-SW).
Based on the normalized 3D Mohr diagrams it is clear that the fractures and faults that are oriented to the SH will be the most permeable, because the faults and fractures experience the least amount of stresses in the direction of SH and they have minimum resistance to flow in this direction, therefore will have relatively high permeability. Also, results showed the faults number 15, 6, 10 and 2 will be the most dangerous faults during CO2 injection.
 
 
Rasool Yazarloo, Amin Jamshidi, Seyed Abdolghader Amanzadeh, Abuzar Esfandyaripur,
Volume 14, Issue 3 (11-2020)
Abstract

Introduction
Loess soil is one of the problematic soils that should be improved its geotechnical properties before the project is implemented. Lack of attention to this issue has caused in many problems for civil projects in Golestan province. This has been more evident in some of the rural areas built on this type of soil. Moreover there are many reports regarding different geological hazard such as subsidence, divergence, erosion and landslide in Golestan loess soil. Among the different types of loess soils found in Golestan province, silty loess should be given more attention due to their large extent and being the bed soil of many villages, and many reports of its hazards.
One of the methods for improving soil mechanical behavior and its geotechnical properties is to use additives to reduce geological hazards. Due to the fine-grained structure of loess soils, the application of nanoparticles is more efficient and could result in solving many of the related problems. Nanotechnology is new scientific field which affects many aspects of engineering and in recent years, many efforts have been made to use this new technology in various geotechnical branches.
So far, research has been carried out on the improvement of various soil types with additives such as cement, bitumen, ash, lime and various types of nanoparticles. Nowadays, the use of nanoparticle additives due to reduction of environmental pollution than other additives has a wider application in improving the physical and chemical properties of problematic soils.
In the present study, the effect of nano-kaolinite on strength properties including uniaxial compressive strength, elasticity modulus, cohesion, and internal friction angle of silty Loess in Kalaleh city of Golestan province have been investigated.
Material and methods
In order to carry out the present research, sample of the silty loess soil from Kaleh city of Golestan province was collected and prepared. Then, 0.5, 1, 1.5, 2, 3 and 4 weight percent of nano-kaolinite were added to soil samples. The soil samples were prepared in a natural state (without additives) and with the additive for uniaxial compressive strength and direct shear tests. Strength properties of soil specimens including uniaxial compressive strength, elastic modulus (based on uniaxial compressive strength test), cohesion and internal friction angle (based on direct shear testing) were determined for native soil and its mixture with different percentage of nano-kaolinite. The data were analyzed and the effect of nano-kaolinite on the strength properties of the silty loess soil sample was investigated.
Results and discussion
Uniaxial compressive strength and modulus of elasticity have been increased with increasing amount of nano-kaolinite, and after 2% nano-kaolinite, increase in nano-kaolinite did not have any significant effect on uniaxial compressive strength and modulus of elasticity. The uniaxial compressive strength and the modulus of soil elasticity in the natural state (without nano-kaolinite) are 1.12 and 15.89 kg/cm2 respectively, and when 2% of the nano-kaolinite is added to the soil, the values ​​of these properties are maximal and reached to 1.19 and 18.10 kg/cm2, respectively.
For native soil (without nano-kaolinite), the cohesion value is equal to 0.09 kg/cm2, and with increasing nano-kaolinite from 0.5 to 2%, the cohesion shows an incremental trend and reached to 0.16 kg/cm2. With increasing the additive percent from 2 to 4% the amount of cohesion were constant and equal to 0.16 kg/cm2. The increasing of cohesion can be attributed to the fact that nanoparticles enhanced water absorption of soil particles which caused in better cohesion and also they affected chemical actions and surface electrical charge of soil particles.
Conclusion
The results of the uniaxial compressive strength tests show that adding up to 2 weight percent Nano-kaolinite to the dry soil increases the uniaxial compressive strength and modulus of elasticity of silty loess soil in the Golestan province, which can be due to proper locking between the nanoparticles and soil particles and increased cohesion.
The results of direct shear tests showed that adding up to 2% nano-kaolinite to dry soil increased the cohesion of the soil and consequently increased the shear strength of the soil.
On the other hand, adding the different amount of nano-kaolinite has not changed much in the internal friction angle of the silty loess soil in the Golestan province.
 
 

Page 5 from 7     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb