Showing 70 results for Soil
, ,
Volume 15, Issue 3 (12-2021)
Abstract
Clayey soils in terms of sharp reduction in strength and swelling ability as a results of water and moisture absorption, it is considered as one of the most problematic soils in civil engineering and construction works. Nowadays, Nano materials such as Nano clay are used to improve and stabilize of clay. On the other side, the increasing volume of municipal waste and residues materials especially debris of building destruction have caused many problems in mega cities such as environmental issues due to incorrect disposal of waste material. Main propose of this research is study of possibility in effecting Nano clay and limestone powder mixture for improve geotechnical properties of Kuye Nasr clayey soil in Tabriz City. In this study, Nano clay and limestone powder in both separate and combined conditions with 5 and 10 percentage are mixed with clay. Curing of stabilized specimens have been performed in 7, 14 and 28 days. For evaluating geotechnical behavior of mixture materials some tests were performed such as Atterberg limits, Compaction, uniaxial strength and direct shear (in 1, 2 and 3 kg/cm2 vertical stress). Results show that the simultaneous effects of 5% Nano clay with 10% limestone powder with 7 days curing period in ambient temperature conditions in clay reduced plasticity index by 72%, improved graining skeleton structure, reduced void ratio of inter grains and increased shear strength by 33%.
./files/site1/files/%DA%86%DA%A9%DB%8C%D8%AF%D9%87_%D8%BA%D9%81%D8%A7%D8%B1%DB%8C.pdf
, , Morteza Jiriaei Sharahi,
Volume 15, Issue 4 (12-2021)
Abstract
Soil stabilization and reinforcement has long played an important role in civil engineering, especially in geotechnics, and over time and the need for a more robust and stable ground to withstand gravity and higher shear forces, has become particularly important. Also, in recent years, with the entry of the environment into the construction industry, with the aim of reducing the adverse effects of industrial waste and construction waste on people's living environment and preserving the environment for the future, in many cases reduces the economic costs of projects. In this research, granular soil is reinforced in two loose and semi-dense states using a waste material called ethylene-vinyl acetate (EVA). The experiments were performed without adding moisture, by weight percentage method and using CBR device. The results show that soil resistance increases significantly with the use of these additives and its effect on soil increases with decreasing soil specific gravity. Also, the optimal amount of additives in loose and semi-dense state is 2% additive and 1% additive, respectively.
./files/site1/files/%DA%86%DA%A9%DB%8C%D8%AF%D9%87_%D9%85%D8%A8%D8%B3%D9%88%D8%B7_%D8%A7%D9%86%DA%AF%D9%84%DB%8C%D8%B3%DB%8C_%D8%B3%D9%87_%D8%B5%D9%81%D8%AD%D9%87_%D8%A7%DB%8C.pdf
Prof. Amir Hamidi, Mr. Mahdi Sobhani, Ms. Farzaneh Rasouli, Ms. Marjan Sadrjamali,
Volume 16, Issue 1 (5-2022)
Abstract
The goal of this study was improvement of sandy soil using a combination of polystyrene foam container waste and Portland cement. For this purpose, Babolsar sand was used as the base soil. Strips of disposable polystyrene foam container waste in “chips” of 50 ´ 5 mm and 50 ´ 10 mm were added to the soil at 0.0%, 0.1%, 0.2% and 0.3% by weight along with 3% Portland cement at a relative density of 70%. All samples were cured for 7 days under saturated conditions and then tested using a large-scale direct shear apparatus. The results showed that, in both cemented and uncemented samples, the addition of foam chips increased the cohesion and internal friction angles, which increased the shear strength of the soil. At higher percentages and using larger-sized foam chips, the shear strength increased even more. In uncemented samples, the stiffness did not change with the addition of foam chips, yet the final dilation of the samples decreased. In cemented samples, both the stiffness and softening behavior after the peak strength point decreased. The final dilation of the cemented samples increased at higher foam chip contents and for the larger sized chips. The results of numerical analysis showed that the use of foam chips increased the safety factor of a slope improved in this manner. It also was found that the foam chips with a lower length-to-width ratio had a greater effect on increasing the safety factor of the tested slopes.
Hossein Sarbaz, Ali Neysari Tabrizi,
Volume 16, Issue 4 (12-2022)
Abstract
In recent years, the use of environmentally friendly microorganisms and biopolymers in geotechnical activities, especially in soil improvement, has received much attention. This is in order to reduce the harmful environmental effects caused by the use of traditional and industrial materials, including cement. Therefore, it seems to be necessary to study the effects of environmentally friendly biopolymers from different points of view, including environmental issues, soil erosion and the factors that influence the geotechnical parameters of the different deposits. The purpose of this article is to review the studies carried out on the use of guar gum. As a green additive from an environmental point of view and the factors that influence the mechanical parameters of soils treated with this biopolymer. The advantages and disadvantages of guar gum from an environmental point of view, as well as the effects of this additive on different soils, are the subject of discussion. Geotechnical parameters such as the unconfined compressive strength, the shear strength, the erosion resistance and the durability of the soils treated with guar gum will be evaluated. The influence of the guar gum parameters in relation to the concentration of the biopolymer guar gum, the moisture conditions, the temperature and the processing time will then be discussed. Finally, the potential opportunities and challenges for the use of guar gum in the geotechnical field will be presented.
Aylar Hosniyeh, Dr Rouzbeh Dabiri, Alireza Alizadeh Majdi, Elnaz Sabbagh,
Volume 16, Issue 4 (12-2022)
Abstract
Silty soils containing sodium content, known as salty silty soils, are classified as another type of problematic soil. When this type of soil comes into contact with water, it can swell and diverge, leading to settlement and deformation. Considering that a significant part of the Urmia Lake basin and the Tabriz plain consists of sodium-rich fine soils, the aim of the project is to improve the quality of the soils. Therefore, one of the main objectives of this study is to assess the sediments within the lake bed in order to reduce erosion and to evaluate the possibility of improving and stabilizing the sodium saline silty soils in the area using the geopolymerization technique. To achieve this, pumice material with pozzolanic properties was separately mixed with the soil under investigation at weight percentages of 3%, 5% and 7%, together with a calcium hydroxide solution as a catalyst at concentrations of 2%, 5% and 7%. The samples were then cured for one day. Laboratory tests, including compaction, uniaxial compressive strength, direct shear, and consolidation, were carried out to evaluate the geotechnical behavior of the improved soil. The results obtained indicate that the combination of 3% pumice with 2% calcium hydroxide increased the uniaxial compressive strength of the stabilized sample by 1.32 times after one day of curing. In addition, the mixture of 7% pumice with 2% calcium hydroxide significantly improved the internal friction angle by 20 times. Finally, the combination of 7% pumice with 2% calcium hydroxide reduced the value of free swelling potential by up to 86%.
Dr. Ehsan Pegah,
Volume 17, Issue 1 (3-2023)
Abstract
The ratios of elastic shear stiffness anisotropy and fabric anisotropy in granular soils are of very important characteristics in soil mechanics, which can influence directly lots of geotechnical engineering attributes. The shear stiffness anisotropy in a soil mass is directly related to the soil fabric anisotropy, which in turn has a fundamental contribution in variations model of shear stiffness anisotropy ratio. The main objective of this study is to evaluate the variations ranges of shear stiffness and fabric anisotropy ratios in granular soils by developing a novel approach for estimating fabric anisotropy ratio from soil grading and particles shape properties. By presuming cross-anisotropy, the anisotropic shear stiffness values of 1042 conducted tests on 200 distinct sandy and gravelly soil specimens from 43 various soil types of diverse sites throughout the world were acquired from literature. Those were then integrated with their associated void ratios, stress conditions, grading parameters and particles shape specifications to produce a comprehensive database of anisotropic shear moduli with respect to testing conditions. The collected data were analyzed, from which the shear stiffness and fabric anisotropy ratios could be calculated for examined geomaterials. The resulting values for fabric anisotropy ratio were then depicted versus grading and particles shape information to inspect the level of dependences through deriving the respective correlations. The findings of this study may serve as a suitable technique to obtain first-order approximations for fabric and shear stiffness anisotropies from soil grading and particles shape characteristics.
Ehsan Pegah,
Volume 17, Issue 2 (9-2023)
Abstract
The ratios of elastic anisotropy in cohesionless soils are always of substantial importance in respective analyses to the geotechnical and geological engineering projects. These ratios are raising from the available discrepancies in anisotropic elastic parameters ascribed to the different directions and planes of soil mass. The major objective of this study is to recognize the variations range of anisotropy ratios resulting from anisotropic shear and Young’s moduli for a variety of cohesionless soils followed by assessing the potential relations among these two anisotropies. To this end, by assuming the transversely isotropy in cohesionless soils, the anisotropic elastic constants from 266 conducted laboratory tests on 37 various soil specimens relating to 10 different sands were derived from conventional triaxial and seismic waves laboratory tests coupled with the numerical testing results in literature. By sorting the collected data and subsequently their analyses, at the first stage, the values of shear and Young’s moduli anisotropy ratios were calculated for the studied soils. Furthermore, by plotting the anisotropy ratios in several joint panels and performing a series of regression analyses on the resulting values, the possible dependencies were inspected between these two anisotropies. At last, the indicative equations among shear and Young’s moduli anisotropies were developed with insistence on use of which instead of the former similar relations in literature.
Dr Masoud Amelsakhi, Eng Elham Tehrani,
Volume 17, Issue 4 (12-2023)
Abstract
This research is a laboratory study to improve the geotechnical properties of sandy soils. Concrete waste with a grain size of 1.2 to 1 inch was used for this purpose. The effect of using concrete waste at 0, 10, 20 and 30 weight percent on dry sandy soil in two loose and dense states was investigated. Based on the results of the direct cutting test, the addition of concrete waste has increased the shear strength and the internal friction angle of the soil; The loose samples made with ٪30 of concrete waste had the greatest effect, so adding ٪30 of concrete waste to loose sand increased the internal friction angle of the soil by ٪32 and the shear strength by ٪42 Similarly, adding ٪10 of concrete waste to dense sand increased the internal angle of friction of the soil by ٪4 and the shear strength by ٪6.
Ms Roghayeh Hasani, Dr Ebrahim Asghari-Kaljahi, Dr Sina Majidiana,
Volume 18, Issue 2 (9-2024)
Abstract
With the expansion of the petroleum industry and the aging of facilities and pipelines, oil spills are becoming more frequent. In addition to environmental impacts, oil spills can cause changes in the plasticity and dispersivity of soils. To investigate the potential for dispersion in fine-grained soils due to oil leakage, soil samples were collected from the Shazand Refinery area in Arak and mixed with 0, 5, 10, 15, and 20% by weight crude oil. Specimens were prepared at the maximum dry density obtained from the Proctor compaction test and, after curing, pinhole and double hydrometer tests were conducted. The results of the mentioned tests showed that the fine-grained soil tends to disperse with the addition of up to 15% oil, and this dispersion increases with further increases to 20%. Changes in the soil fabric with increasing oil content were investigated using scanning electron microscopy (SEM) images, and the results showed that the dispersion of soil particles increased with increasing oil content.
Dr Masoud Amelsakhi,
Volume 18, Issue 3 (12-2024)
Abstract
Tunnels behave differently under seismic conditions due to their geometric shape, geotechnical parameters and installation depth. Although tunnels are less damaged compared to surface structures, they are still damaged during earthquakes. Various experiences have proved this matter, so researchers are concerned to study the seismic behavior of tunnels. In this research, circular tunnels are discussed under static and pseudo-static loading. In addition to different pseudo static earthquake factors, internal soil friction angle, soil behavior models, sliding and non-sliding of tunnel wall are also studied. Three different soft, medium and stiff soil conditions are studied. Some results show that in all three soil conditions and two soil behavior models, Mohr-Coulomb and hardening soil, the horizontal displacements increase due to the increase of the pseudo static earthquake factor. It should be noted that softening of the soil increases the horizontal displacements.