Search published articles


Showing 39 results for Strength

Mojtaba Bahaaddini,
Volume 11, Issue 4 (5-2018)
Abstract

Introduction
Determination of the mechanical properties of rock materials has been remained as a challenge for engineering geologists. In-situ tests are rarely used to determine the mechanical properties of rocks due to difficulties in sample preparation, performing and interpretation of the results, high costs as well as the required long time for doing the experiments. The common approach to determine the mechanical properties of rock materials is through conducting laboratory experiments and estimation the in-situ properties based on these laboratory results. This approximation, which is called scale effect, has been remained as a challenge for engineering geologists and practical rock engineers for decades. ...../files/site1/files/0Extended_Abstract1.pdf
Nima Headarzadeh, Tania Taslimi,
Volume 11, Issue 4 (5-2018)
Abstract

Introduction
One of the most important 1-ring aromatic organic pollutants is phenol and its related compounds. These compounds are classified as hazardous wastes base on U.S.EPA primary contaminates list. The phenolic compounds are very poisonous and these are harmful for human health and also for other biota.
To control the movement of such hazardous organic waste in a contaminated soil, solidification/stabilization (S/S) process can be an effective alternative.  Due to the negative impact of organic compounds on the cement hydration, the cement-based S/S may be not effective for controlling the movement of such pollutants. To avoid these effects, using some additives during solidification period has been recommended. One of the proposed of such compounds is organophilic clay that is the modified montmorillonite by quaternary ammonium salts (QAS). There are several researches to evaluate the organophilic clay effect on adsorption and stabilization of organic compounds during S/S process. The effectivity of S/S process can be examined by several tests such as leaching test, durability, unconfined compressive strength (UCS), etc.
In this study, efficiency of ordinary and organophilic clay was evaluated in the solidification and stabilization process based on unconfined compressive strength of a phenol-contaminated soil.
Material and methods
In this study, an artificially phenol contaminated sand was considered to evaluate the effectivity of the white cement based S/S process by using two different additives of ordinary and organophilic clay.
The contaminated sand contains 2000 ppm of phenol. S/S process was conducted on 14 samples with different amounts of white cement (15 and 30 wt%) as binder and ordinary/organophilic clay (0, 8, 15, and 30 wt % for each of them) as the additives. Two zero percent additive samples are considered as control samples.
All samples were cured for 28 days and then UCS test was conducted for all of them.
Results and discussion
Unconfined compressive strength of all examined samples were ranged from 2226 to 6999 KPa. In the samples with equal amount of cement, th higher UCS values can be observed in blank samples (without any additives and phenol). By adding phenol in the examined sand, UCS of the solidified sample reduces 3 -3.5%.Moreover, results showed that UCS was reduced by increasing the amount of clays. The reduction of the samples containing organophilic clay was higher than samples containing ordinary clay. Unconfined compressive strength values of all samples met the minimum standards indicated by France, Netherlands, Britain and America for disposal in a sanitary landfill. The sample with 30% white cement and 8% bentonite was the maximum amount of UCS (4856 KPa) and the sample with 15% white cement and 30% organophilic clay was the minimum one (2226 KPa). In this study, the average cost of organophilic clay-based solidified samples was 2.3 to 2.8 times more than the average cost of the bentonite-based solidified samples.
Conclusion
In this study, the strength of the cement-based solidified samples contaminated by phenol was investigated. The summary of the findings of the research is as follows:
1. By adding the phenol to pure sand, the UCS of the samples can be reduced 3-3.5 %.
2. Addition of organophilic clay reduces the UCS of the samples more than the ordinary clay (bentonite) in the same amount.
3. All samples met the recommended UCS level for the S/S process. The minimum UCS level is for the sample with 15% of cement and 30% of organophilic clay.
The cost of S/S process is between 23 and 650 $/ton of contaminated soil depending on the amount of used additives and binder. The samples containing organophilic clay has a higher cost than the similar sample containing ordinary clay.
4. To evaluate the S/S process effectivity, a leaching test of phenol (such as TCLP) is recommended  ./files/site1/files/0Extended_Abstract2.pdf
Gholamhosein Tavakoli Mehrjard, Fariba Motarjemi,
Volume 12, Issue 2 (10-2018)
Abstract

Introduction
The general failure mechanism of soil element in geotechnical structures is shear failure under static and dynamic loads. Therefore, assessment of soils’ shear strength parameters is very crucial in the performance of geotechnical structures, especially in slope stability. Tavakoli Mehrjardi et al. (2016) showed that by increasing soil grain size in unreinforced soil masses, bearing capacity of foundation increases due to increasing shear strength parameters of soil mass. Furthermore, Tavakoli Mehrjardi and Khazaei (2017) found out that generally, for all reinforced and unreinforced conditions, cyclic bearing capacity was enhanced by increasing the medium grains size of backfills. Taking into account the deficiency of studies on the shear characteristics of soil, a series of large direct shear test have been carried out to investigate and to compare effects of the soil’s physical properties such as aggregate size and relative density, besides of normal stress, on the shear characteristics of the backfills.
Material and Test Program
In this study, three types of uniformly graded soils as fill materials with the medium grain size (D50) of 3, 6 and 12 mm were considered. These soils are classified as SP and GP in the Unified Soil Classification System. It should be mentioned that these materials can be used in railroad as ballast and in retaining walls as fill materials. The current study aims to investigate strength characteristics of the backfills, influenced by different parameters such as relative density of the fill materials, normal stress on the shear plane and aggregate size of the fill materials. To cover all the matters, 18 large-scale direct shear tests have been scheduled. These tests encompass two relative densities of fill materials (50% and 70% which represent medium dense and dense backfill, respectively), three aggregate sizes of fill materials (3, 6 and 12 mm- selected based on the scaling criteria on size of shear box) and three normal stresses (100, 200 and 300 kPa- these values cover rather low to high vertical stress in a soil element of common geotechnical projects) have been examined. It should be mentioned that, prior to shearing, the normal stress was applied to the specimens for a period of 1 h, in order to stabilize the soil particles from any possible creep. As all materials used in this research are of coarse-grained type and the experiments were performed under dry conditions, the displacement rate of 0.5 mm/min was selected. During the tests, the applied normal stress, displacement of the lower box, shear force mobilized at the interface and vertical displacements of the cap were continuously recorded.
Results and discussion
The curves of shear stress as a function of shear displacement and also shear displacement-vertical displacement for samples show that shear stress dropped down to a specific amount of residual shear strength after reaching maximum amount of shear stress . It was observed that increasing the particle size and relative density of the fill materials mostly fortify interlocking of the grains which in turn, resulted in increasing the tendency to expansion through the shear plane. On the other hand, the initial compression has decreased and dilation was started from a smaller shear displacement. This may be interpreted that as the soil particles size increases, more expansion is required to reach the maximum shear strength. Moreover, comparing the observed behavior, it is found out that unlike the effect of grain size and density, increasing the normal stress caused the materials to be more compressed, resulted in reducing expansion and increasing the initial compression of the soil mass. This conceivably means that increasing normal stress, transferred on shear plane, can change the failure mechanism of materials, from dilatancy failure to bulging failure under shearing. From the results, it was found out that increasing medium grains size of soil from 3 mm to 12 mm ended to improvement in the maximum friction angle at relative density 50 and 70% by the value up to 4.4 and 5.8 degree, respectively. In fact, due to increasing grain size, the grains interlocking have been fortified. In order to have a comparison, the maximum dilation angles of all fill materials, mobilized at the shear plane, have been derived. Accordingly, the maximum dilation angle was increased with the increment of the fill grains size and relative density of the material. Nevertheless, by considering variation of peak dilation angle with normal stress, it is found out that the normal stress had a negative influence on the advancement of interface’s dilation angle. These findings can be directly interpreted by considering the compression/expansion of the materials during the increment of shear displacements.
Conclusion
The current study, consists of 18 large-scale direct shear tests, aims to investigate shear characteristics of soil which influenced by different parameters such as relative density of the fill materials, normal stress at the shear plane and aggregate size of the fill materials. Eventually, the following conclusions are presented:
  • Increasing relative density, soil particle size and normal stress have beneficial effect in shear strength improvement. But, the mechanisms of each parameter in this enhancement is different.
  • The dilation rate of shear interfaces directly complies with changes in the ratio of applied shear stress to vertical stress. So, the maximum dilation angle and the maximum ratio  mobilized at the shear plane have occurred around the same shear displacement.
  • Maximum values of friction and dilation angels have been occurred around the same shear displacement. Moreover, compaction effort leads to increase the required shear displacements to approach the maximum shear characteristics.

Nazanin Mahbubi-Motlagh, Ahmad-Reza Mahboubi Ardakani,
Volume 12, Issue 3 (12-2018)
Abstract

Introduction
Many studies have shown that the lime stabilization method can increase the strength and hardness of cohesive soils. Increasing these parameters is dependent on several factors such as curing time, lime content, clay minerals, soil particle size and moisture content.
When lime is added to moisture clay soils, a number of reactions occur to improve soil properties: 1- short-term and 2- long-term reactions. The short-term reactions include cation exchange, flocculate and carbonation; whereas, the long-term reactions include pozzolanic reactions. Since adding lime changes clay particles structure, it can change shear strength parameters.
Using geogrids as reinforcement in soil mass creates a composite system in which the soil tolerates compressive stresses. The elements of the reinforcement are also responsible for tensile stresses and interaction the reinforcement elements and soil increases the strength and ductility. The mechanism of stress transfer is based on interaction between soil and reinforcement. Accordingly, one of the most important issues in the analysis and design of reinforced soil structures is determination of frictional resistance parameters in soil-geogrid interface (adhesion and friction angle) which is discussed in this paper.
Stability and performances of reinforced earth structures significantly depend on the shear behavior of interface soil-geogrid in different weather conditions. Factors such as rainfall, seepage of groundwater and seasonal changes influence on soil moisture content. Changes in moisture content or soil dry density change interface soil-geogrid resistance. Increasing moisture content reduces the shear strength of reinforced soil and sometimes leads to large deformation or failure of system.
In this study, clayey soil with low plasticity (CL), hydrated lime for soil stabilization and two types of geogrid with different aperture size for reinforcing were used. In order to improve the brittle behavior of lime stabilized soils and to increase ductility of the samples, in the present study, lime stabilization and geogrid reinforcement was investigated, simultaneously. The interface shear strength parameters of treated soil with different lime content-geogrid and reinforcement coefficient were determined by direct shear tests. In addition, to study the effect of moisture content on interface shear strength soil-geogrid, all samples were subjected to shear in optimum and higher moisture content because the long-term performance of reinforced cohesive soils exposed to seasonal variations is evaluated.
Material and methods
The selected soil for the study is clayey soil from south region of Tehran, Iran. According to Unified Soil Classification System (USCS), the soil was classified as CL (clay of low plasticity).
In this study, three series of specimens were prepared and tested as follows:
  • Stabilized samples with 0, 2, 4 and 6% lime for 7 days curing time
  • Reinforced samples by geogrid (with and without transverse ribs of geogrid)
  • Reinforced stabilized samples with different lime contents (0, 2, 4, 6 and 8%) by geogrid (with and without transverse ribs of geogrid) for 7 days curing times
To investigate the effects of bearing resistance provided by the transverse members of the geogrid and their contribution to the overall strength for reinforced soil sample, numerous tests were conducted with the geogrid without transverse members (all the samples had the same number of longitudinal members of the geogrid).
Direct shear tests were carried out on specimens based on ASTM D5321 at constant horizontal displacement rate of 1 mm/min.
Results and discussion
The results reveal that the shear strength of the stabilized soil increased and there are maximum values in an optimum lime content which is about 4%. Increasing lime content to an optimum lime content of clay caused the maximum changes in clay minerals because of cementitious and pozzolanic reactions and increases the strength of the clayey soil. Reduction of strength by adding lime to the soil more than the optimum content may be caused by the following reasons:
1. Stopping pozzolanic reactions because of finishing reactance during reaction
2. Making difficult the release of limewater (Ca OH 2) in the cementitious context of soil.
Until SiO2 and AL2O3 are not finished, pozzolanic reactions continue and produce cementitious product, thus the shear strength increases and improves the long-term performance of the stabilized soils.
Reinforced soil samples have higher shear strength relative to samples without reinforcement subjected to the same normal stress. This increase in shear strength is mainly attributed to the interlocking of soil particles that penetrate through geogrid apertures. In addition, geogrids restrain particles´ movement and thus increase the mobilized frictional resistance at particle contact points.
Increasing in lime content to 4% (optimum lime content in this study) has significant effect on the development of adhesion and then decreases gradually with increasing of lime content from 4 to 6%, while friction angles remain constant approximately.
Adhesion and friction angles decrease with increasing moisture content.
The results show that the reinforced stabilized specimen with 4% lime has the maximum value of reinforcement efficiency. The increase in moisture content can significantly reduce the reinforcement efficiency.
It is clearly observed that the reinforcement coefficient of reinforced stabilized sample by geogrid that has smaller aperture opening size (4Í4 mm) is higher than reinforced stabilized sample by another geogrid (10Í10 mm) in optimum and higher than optimum moisture content.
Conclusion
One hundred and twenty samples in 3 specimen categories including lime treated, reinforced and reinforced treated samples were prepared for the current study for 7 days curing time in optimum content and higher than optimum content. The main results can be concluded as:
The test results indicate that the shear strength of stabilized clayey samples increases after 7 days curing time due to pozzolanic reactions.
The results show that reinforced samples have higher shear strength relative to unreinforced samples.
Adhesion and friction angles and reinforcement efficiency decrease with increasing moisture content.
The reinforcement coefficient of reinforced stabilized sample by geogrid 1 that has smaller aperture opening size is higher than by geogrid 2. In general, interaction between particles and geogrid with smaller mesh size is stronger because of matching the size of soil particles and meshes../files/site1/files/123/8Extended_Abstract.pdf
 
Mehri Sharifi, Maryam Meftahi, Seyed Abolhasan Naeini,
Volume 12, Issue 5 (12-2018)
Abstract

Materials such as waste tire chips were widely used to improve the strength of soil. The objective of this study is to discuss the residual strength or steady-state behavior of sand-waste tire chip mixtures. A series of undrained monotonic triaxial compression tests were conducted on reconstituted saturated specimens of sand and sand-tire chip mixtures with variation in the tire-chip contents from 0 to 4 percentages by dry weight of soil. The specimens are prepared using dry deposition method of preparation. The influence on residual resistance of varying confining pressure (100, 200, and 300 kPa) and sand mixture relative density (40, 65, and 80%) were evaluated. Tests results showed that by increasing the tire chip contents, the residual strength increased and steady-state lines move to the right of log Sus-e diagram. Also, the residual resistance improvement induced by tire chip inclusions was found to be sensitive to the relative density of samples and applied confining pressure.
Mehrdad Emami Tabrizi, Bahareh Mohammad Seyyedi,
Volume 13, Issue 1 (8-2019)
Abstract

Introduction
Microbial induced calcite precipitation (MICP) is one of the environment-friendly soil improvement methods that uses urease activity of the microorganisms to bound soil grains.
This method is based on three following steps:
1. Urea hydrolysis by urease activity of microorganisms and formation of ammonium and carbonate ions:
(2)
2. The reaction between carbonate and calcium ions and formation of calcium carbonate:
(2)
3. Bonding the soil particles by calcium carbonate.
One of the main challenges in use of MICP for soil improvement is the selection of proper injection method. An efficient injection method should lead to the construction of a homogeneous specimen beside of less used materials. In this study, a new method based on the theory of convection of liquids, for injection of bacteria and cementation solution is introduced.
Specimens are made according to the new injection method and their strength and homogeneities are tested. The obtained results are compared with the specimens which are made based on common injection method. Eventually, the success of the proposed injection method is investigated.
 
Material and methods
Gram-positive microorganism Sporosarcina Pasteurii No. 1645 (DSM 33) is provided from Persian type culture collection (PTCC). To make sand columns, Poly Vinyl Chloride (PVC) tubes were used with an internal diameter of 5cm and length of 12cm. Molds were placed vertically and a scouring pad and approximately 1 cm gravel as a filter are placed at the bottom of the column. Then the column packed with pure silica (Table 1). Finally, a scouring pad and approximately 1 cm gravel as a filter are placed at top of the column and mold were closed with a threaded Polypropylene layer on top and bottom with a hole for injection of bacteria and cementation solutions.
Table 1. Sand properties used in this study
Soil Type Gs γd e D10 D30 D60
Sw 2.6 1.84 41% 0.11 mm 0.43mm 0.85mm
In this study, a new multi-step method of injecting bacterial and cementation solutions is introduced. Injection of solutions is done after washing the sand column with distilled water. At the first step, 0.25 times of the void volume of soil, the bacterial solution is injected into the sand column. The bacteria allowed resting in the sand for 2 hours before the cementation solution was injected. After 2 hours, cementation solution is injected into the sand column by the amount of 0.25 times of pore volume of soil. The cementation solution consisted of 1.5 M urea and 3 M Calcium chloride. Again after 2 hours delay, bacterial solution and cementation solution are injected into sand column both by the amount of 0.25 times of pore volume of soil, same as aforementioned steps. In order to provide a comparison between the proposed injection methods of this study with conventional injection method, specimens are also made by the conventional method. In these specimens, bacterial solution and cementation solution are injected into the soil both by the amount of 1.5 times of pore volume of soil.
Results and discussion
To evaluate the homogeneity of the biologically improved sand specimens, the specimen is divided into 6 equal parts and the amount of calcium carbonate in each part is measured. It is found that calcium carbonate crystals are formed more homogenous in parts of specimens which are improved by new injection method (Figure 1). While specimens improved with conventional injection method are not homogeneous. The new injection method used in this study is based on the theory of convection in cementation and bacterial solution. Since the specific gravity of used cementation solution (3M urea and 1.5M calcium chloride solution) is 1.120 gr/cm3 and the specific gravity of ammonium chloride (which is the result of reaction between ammonium and chloride ions) is 1.031 gr/cm3, therefore a convection flow occurs in cementation solution after urease reaction (reaction 1) because of difference in specific gravity of two mentioned solutions. This convection flow causes a sustainable contact between cementation and bacterial solution in entire height of specimen.

Figure 1. Amount of calcium carbonate deposition along improved specimens by new and conventional injection method
To examine the efficiency of newly suggested injection method in this study, uniaxial compressive strength test (UCS) is performed on biologically improved sand specimens. Figure 2 shows stress-strain curves of specimens. The peak strength of specimens with conventional injection method is about 0.6 MPa. While the peak strength of biologically improved specimens prepared by new injection method is about 1.6 MPa. The reason for this difference in the obtained results is that when the volume of bacterial solution is more than the pore volume of soil, a part of bacteria solution in the first step of injection is removed. Then with an injection of cementation solution, more amounts of bacteria removes from the specimen before efficient placement of bacteria between soil particles. However, in new injection method the total volume of injection solutions (bacterial and cementation solutions) are equal to the pore volume of soil and this prevents the removal of bacteria from a porous medium.

Figure 2. Uniaxial stress-uniaxial strain curves of biologically improved specimens
Conclusion
In this study, the feasibility of using a new injection method for biological soil improvement is investigated based on the theory of convection with the aim to decrease the volume of bacteria and cementation solution. In this method, the final volume of bacterial and cementation solutions are reached the soil void volume in 4 consecutive injection steps. Specimens are made to investigate the efficiency of the proposed injection method. Also, specimens are made base on conventional injection method to provide the comparing possibility. Studying the precipitated calcium carbonate along the specimens show more homogeneity in ones prepared by proposed injection method in comparison to the specimens made by the conventional method. The obtained results of UCS tests are also showed that specimens made by new injection method have the more uniaxial strength (1.6 MPa) while the conventional method specimens are presented the strength of 0.6 MPa. Eventually, the proposed injection method of this paper implies less amount of bacterial and cementation solutions in a proper and efficient manner to bond the soil particles which leads to specimens with more strength, stiffness and homogeneity../files/site1/files/131/2Extended_Abstract.pdf
 
Mohammad Moghadas, Ali Raeesi Estabragh, Amin Soltani,
Volume 13, Issue 1 (8-2019)
Abstract

Introduction
Improving the mechanical behavior of clay soil by stabilization agents is a mean of fulfilling geotechnical design criteria. The method of stabilization can be divided into chemical, mechanical, or a combination of both methods. Chemical stabilization is performed by adding chemical agents such as cement, lime or fly ash to the soil (Bahar et al., 2004). Soil reinforcement is one of the mechanical methods that is used for improving the behavior of soils (Tang et al., 2007). Reinforcement of soil achieved by either inclusion of strips, bars, grids and etc. within a soil mass in a preferred direction or mixing discrete fibers randomly with a soil mass.
Mixing of cement with soil is made a production that is called soil-cement and results in chemical reaction between soil, cement, and water. The compressive strength of soil-cement is increased by increasing the cement content and this leads to brittle behavior or sudden failure. On the other hand, by increasing the cement to soil ratio for cohesive soils, shrinkage micro-cracks may develop in the soil as a result of the loss of water content during drying or hydration of cement. Therefore, if the tensile strength of these materials is not sufficient cracks will develop under loading and damage will be resulted (Khattak and Alrashidi, 2006). Consoli et al. (2003) and Tang et al. (2007) indicated that adding the fiber to soil can prevent from occurrence of these cracks and increases the tensile strength of the soil.
The focus of this paper is on the statistical analysis of the results and development of regression models. Regression relationships are developed based on the experimental results that were presented by Estabragh et al. (2017). These relationships relate the compressive and tensile strengths of the soil to percent of used fiber, cement and curing time.
Material and methods of testing
Unconfined compression and tensile strength tests were carried on unreinforced and reinforced soil, soil cement according to ASTM standards. Samples of soil-cement were made by mixing a clay soil and two different weight percent of cement (8 and 10%). Reinforced soil samples were also prepared by mixing 0.5 and 1 weight percent of Polypropylene fibers with 10, 15, 20 and 25 mm lengths. The dry unit weight and water content of prepared samples were the same as optimum water content and maximum dry unit weight that were resulted from standard compaction test. The compressive and tensile strength tests were conducted on the samples by considering the curing time according to ASTM standards until the failure of the sample is achieved.
Results and discussion
The experimental tests showed that reinforcement of the soil and soil cement increase the peak compressive and tensile strength. The peak compressive strength of reinforced soil is increased by increasing the fiber content at a constant length of the fiber. It can be said that by increasing the percent of fiber, the number of fibers in the sample is increased and contact between soil particle and fibers is increased which result in increase in the strength (Maher 1994). However, by increasing the length of the constant fiber inclusion there will be no significant increase in strength because the number of shorter fiber is more than longer fiber in a specific sample (Ahmad et al., 2010). Inclusion of fibers can greatly increase the tensile strength of clay soil. In addition to reinforcement of soil cement showed the same trend. When fiber is added to soil cement, the surface of fiber adheres to the hydration products of cement and some clay particle. Therefore, this combination increases the efficiency of load transfer from the composition to the fibers which increase the peak strength (Tang et al., 2007). In addition, the tensile strength shows the same trend.
Based on the experimental data on the behavior of a randomly reinforced clay soil and soil cement multiple regression models (linear and non-linear) were developed for calculating the peak compressive and tensile strength (dependent variables) based on the value of the coefficient of determination (R2). The proposed regression models were functions of independent variables including weight percent of fiber, length of fiber (length/diameter of fiber), weight percent of cement, and curing time. Finally, the comparison is made between the predicted results from proposed models and experimental results. In order to investigate the model accuracy, the Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (NRMSE) are used.
 The Multiple Linear Regression models (MLR) was very suitable for the study of the effect of independent variables on the quantitative analytic dependent variable. The NRSME for peak compressive and tensile strength is was 3.59% and 5.11% respectively for these models. Also, the Multiple Nonlinear Regression models (MNLR) had a much lower error than the linear model because of the quadratic equation, the equation will be able to predict the increase and decrease of the output variable in terms of the increase of the independent input variable. Therefore, The NRMSE for peak compressive and tensile strength was 1.02% and 4.04% for MNLR models respectively.
Conclusion
The following conclusions can be drawn from this study:
- The strength of reinforced soil and soil cement is increased by increasing the fiber content.
- Increasing the length of the fibers in the soil and soil cement has no significant effect on increasing the peak compressive strength, but it will be effective in increasing the tensile strength.
- The Multiple Nonlinear Regression models (MNLR) have more accuracy for prediction of output variable (peak strength) because of lower normalized root mean square error../files/site1/files/131/7Extended_Abstract.pdf


 
Majid Aslani, Javad Nazariafsha, Navid Ganjian,
Volume 13, Issue 3 (11-2019)
Abstract

Introduction
Stone column installation method is one of the popular methods of ground improvement. One of the common uses of stone columns is to increase slope stability. Several studies have been performed to examine the behavior of stone columns under vertical loads. However, limited research, mostly focused on numerical investigations, has been performed to evaluate the shear strength of soil reinforced with stone column. The study presented herein is an experimental program, aimed to explore the shear strength of loose sand bed reinforced with stone column. Direct shear tests were carried out on specimens of sand bed material, stone column material and sand bed reinforced with stone column, using a direct shear device with in-plane dimensions of 305*305 mm2 and height of 152.4 mm. Experiments were performed under normal stresses of 35, 55 and 75 kPa . In this study, 4 different area replacement ratios (8.4, 12, 16.4 and 25%), and 3 different stone column arrangements (single, square and triangular) were considered for investigation. The obtained results from this study showed that stone column arrangement had an impact on improving the shear strength of stone columns. The most increase in shear strength and stiffness values was observed for square arrangement of stone columns and the least increase was for single stone columns. This study also compares the equivalent shear strength values and equivalent shear strength parameters (internal friction angle and cohesion) measured during experiments with those predicted by analytical relationships. Results show that shear strength values and shear strength parameters measured from experiments are higher than those obtained from analytical relationships. Accordingly, a corrective coefficient was calculated for each column arrangement to represent the correlation between experimental and analytical results.
Material Properties of Loose Bed and Stone Column
Fine-grained sand with particle size ranging from 0.425 to 1.18 mm was used to prepare loose sand bed, and crushed gravel with particle size ranging from 2 to 8 mm was used as stone column material. The sand material used as bed material had a unit weight of 16 kN/m3 and a relative density of 32.5%, and the stone material used in stone columns had a unit weight of 16.5 kN/m3 and a relative density of 80%. The required standard tests were performed to obtain the mechanical parameters of bed material and stone column material. As the diameters of model scale stone columns were smaller than the diameters of stone columns installed in the field, the particle dimensions of stone column material were reduced by an appropriate scale factor to allow an accurate simulation of stone columns behavior.
Testing Procedure
In this study, large direct shear device with in-plane dimensions of 305*305 mm2 and height of 152.4 mm was used to evaluate the shear strength and equivalent shear strength parameters of loose sand bed reinforced with stone column. Experiments were performed under normal stresses of 35, 55 and 75 kPa.
Two class C load cells with capacity of 2 ton were used to measure and record vertical forces and the developed shear forces during the experiments, and a Linear Variable Differential Transformer (LVDT) was used to measure horizontal displacement. All achieved data from the experiments including data on vertical forces, shear forces and horizontal displacements were collected and recorded using a data logger, and an especial software was used to transfer data between the computer and the direct shear device. All specimens were sheared under a horizontal displacement rate of 1 mm/min.
Testing Program
Experiments were performed on single stone columns and group stone columns arranged in square and triangular patterns. The selected area replacement ratios were 8.4, 12, 16.4, and 25% for single stone columns, and 8.4, 12 and 16.4% for square and triangular stone column arrangements. To eliminate boundary effects, the distance between stone columns and the inner walls of the shear box was kept as high as 42.5 mm. In total, 12 direct shear tests were carried out, including 2 tests on loose sand bed material and stone column material, and 10 tests on stone columns with different arrangements. From the tests performed on group stone columns, 4 tests were performed on single stone columns, 3 tests on stone columns with square arrangement and 3 tests on stone columns with triangular arrangement. Hollow pipes with wall thickness of 2 mm and inner diameters equal to stone column diameters were used to construct stone columns. To prepare the specimens, first, the hollow pipes were installed in the shear box according to the desired arrangement. Then, bed material with unit weight of 16.5 kN/m3 was placed and compacted in the box in 5 layers, each 3 cm thick. Stone material was uniformly compacted to construct stone columns with uniform unit weight. The compaction energy was 67 kJ/m3 in all tests.
Results and discussion
In this paper, the behavior of stone columns under shear loading was experimentally investigated in large direct shear device by performing tests with different area replacement ratios (8.4, 12, 16.4, and 25%), different stone column installation arrangements (single, square and triangular), and different normal stresses (55, 75 and 100 kPa). The key findings of this study are as follows:
1. Shear strength increases with increase of area replacement ratio due to the higher strength of combined soil-stone column system, and due to the increase of stone column area effective in shear plane. The amount of shear strength increase with area replacement ratio is low for ratios lower than 15%. However, this amount is higher for area replacement ratios higher than 15%.
2. For stone columns with equal area replacement ratios, higher shear strength was mobilized in stone columns with square and triangular installation arrangements compared to single stone columns. Among the installation patterns investigated in this study, stone columns with square arrangement experienced the highest increase in shear strength value, while single stone columns experienced the lowest. One of the reasons of shear strength increase in square and triangular patterns is the increase of confining pressure applied by stone columns to the soil between them. Another reason is the increase the total lateral surface by changing the column arrangement from single column to square and triangular patterns. This increased lateral surface increases the lateral force imposed on the stone columns, resulting in higher shear strength mobilization of stone material.
3. The slope increase of shear strength-horizontal displacement curves shows that soil-stone column system has higher stiffness than loose sand bed, and this stiffness varies with area replacement ratio and installation pattern. The maximum stiffness values refer to stone columns installed in square pattern and the minimum values refer to single stone columns. In general, stone column installation pattern has an effective role in increasing stiffness.
4. Results show that shear strength parameters increase in soil reinforced with stone column. The maximum increase in internal friction angle refers to stone columns with square pattern and the minimum increase refers to single stone columns.
5. The equivalent shear strength values measured from experiments are higher than those obtained from analytical relationships. Accordingly, it is conservative to use analytical relationships to calculate shear strength parameters. It is worthy to mention that these relationships assume that the value of stress concentration ratio is equal to 1. Results from this study indicate that the value of stress concentration ratio should be accurately calculated and used in the relationships.
6. As discrepancy was observed between values measured from experiments and those obtained from analytical relationships, corrective coefficients were calculated to modify analytical relationships. These coefficients were computed and presented based on stone column installation pattern, area replacement ratio and the applied normal stress values../files/site1/files/133/2Extended_Abstracts.pdf 
Ehsan Amjadi Sardehaei, Gholamhosein Tavakoli Mehrjardi,
Volume 13, Issue 5 (12-2019)
Abstract

This paper presents a feed-forward back-propagation neural network model to predict the retained tensile strength and design chart to estimate the strength reduction factors of nonwoven geotextiles due to the installation process. A database of 34 full-scale field tests was utilized to train, validate and test the developed neural network and regression model. The results show that the predicted retained tensile strength using the trained neural network is in good agreement with the results of the test. The predictions obtained from the neural network are much better than the regression model as the maximum percentage of error for training data is less than 0.87% and 18.92%, for neural network and regression model, respectively. Based on the developed neural network, a design chart has been established. As a whole, installation damage reduction factors of the geotextile increases in the aftermath of the compaction process under lower as-received grab tensile strength, higher imposed stress over the geotextiles, larger particle size of the backfill, higher relative density of the backfill and weaker subgrades.

 


Mahnaz Firuzi, Mohammad Hossein Ghobadi, Ali Noorzad, Ehsan Dadashi3,
Volume 13, Issue 5 (12-2019)
Abstract

Slope stability could be a major concern during the construction of infrastructures. This study is focused to analyze the slope stability of Manjil landslide that was located 41+400 to 42+200 km along Qazvin-Rasht freeway, Iran. The Manjil landslide, which had 168 m long and approximately 214 m wide, was occurred due to inappropriate cutting in June 2013 and led to destructive and closure of freeway. Slope stability analysis was carried out using a finite element shear strength reduction method (FE-SRM). The PHASE2D program was utilized in order to model the slope cutting and stability of landslide. Slope angle was flatted with 3H:2V geometry and stabilized with piling. The results indicated safety factors of 1.95 and 1.17 in the static and pseudo-static states, respectively, while the maximum bending moment with single pile (SP) in the pseudo-static state was 5.69 MN. Maximum bending moment of the pile around the slip surface was significantly large and more than the bending moment capacity of the pile. Due to the large bending moment on the pile, pile-to-pile cap connections (two pile group: 2PG) should be designed at the toe of the slope. The obtained results showed reduction of this parameter to 2.48 MN. Thus, it can be concluded that 2PG is a suitable stabilization method for the Manjil landslide.
Mr Vahid Yousefpour, Mr Amir Hamidi, Mr Ali Ghanbari,
Volume 13, Issue 5 (12-2019)
Abstract

Sandy soils usually contain different amounts of fines like silt and clay, causing some changes to their shear strength and dilation characteristics. Bolton [1] conducted  some experiments on the different sands and suggested a relation between the parameters of the soil shear strength. In this paper, some experiments were performed on fine contained sand and the extended Bolton's relation was has been proposed. In this paper, shear strength and dilation behavior of a pure sand mixed with different amounts of silt or clay fines were studied using direct shear test device (100*100*30 mm), and a total of 96 tests were carried out. The samples were prepared separately using clay and silt contents of 0, 10, 20 and 30% in different relative densities of 70, 80, 90 and 100%. They were tested under three surcharge pressures of 90, 120 and 150 kPa, under particle crushing threshold. Variations in shear strength, maximum friction angle, critical state friction angle and cohesion, as well as dilation angle were investigated by increasing in the mentioned amounts. The results demonstrate that shear strength, dilation angle, maximum friction angle decreased by clay content increase, however, they increase with increase in silt content. In addition, a new form of the Bolton's relation for fine contained sandy soils was presented.
Ahmadreza Mazaheri, Ali Noorzad,
Volume 14, Issue 2 (8-2020)
Abstract

Introduction
The use of various additives to improve the properties of soils from past years have been studied by different researchers. Such additives are lime, cement, fly ash and fiber which have been used frequently in combination with soil. Lime is one of the oldest additives that it is utilized with different types of soils. Lime has positive impact on geotechnical properties of soil that alter some of the soil characteristics. Adding lime causes to reduce plasticity ranges, enhanced efficiency, strength and shrinkage of the soil. Extensive researches in the field of sustainability of clay with lime indicate that the optimum percentage of lime in the soil modification is between 1 to 3% by weight of the soil. But some researchers believe 8% by weight of lime are effective for soil stabilization. The presence of lime in clay soil yiels to occur some reaction, that it improves the soil properties. Reactions are included cation exchange flocculation, carbonation and pozzolanic reactions. Cation exchange between the clay cations and calcium cations takes place in lime. Cation exchange causes clay particles to get closer to each other creating complex structures in the clay soil and this improves the   clay soil features. In recent years the use of nanoparticles is considered in civil engineering field. The investigations have demonstrated that the use of nanomaterial increases cement reactivity and also improves density because it is filled with particles. Recent research has shown that the use of montmorillonite nano-clay soils to control swelling and to reduce failure potential in the soil. A number of researchers have expressed the use of nanoparticles causes to decrease the hydraulic conductivity of soils. In this paper, the effect of nano-clay and lime on the important soil parameters is evaluated. For this purpose, lime at 2 and 4 percentage and nano-clay at 0.5, 1 and 2 percentages have been added to clay soil and their impact on parameters such as optimized moisture, Atterberg limits, unconfined compressive strength and self-healing properties of soil is evaluated. Self-healing properties is one of the features, to repair damages due to internal erosion in the clay which is very efficient and important.
Materials and experimental methods
In the present research, the effect of lime and montmorillonite nano–clay to soil strength is evaluated. For this purpose, samples of clay soil (CL) has been used. In the experimental study, the percentages of additives mixed with the dry soil and then the optimum moisture and maximum specific weight of soil are determined with different percentages of additives. Soil Atterberg limits based on the ASTM D4318 standard have been determined.   Dry samples have been mixed together and then the water is added and mixed well with each other. Then the sample has been prepared in the form of a steel cylinder (cylindrical specimens) with a diameter of 50 mm and a height of 100 mm. Specimens were molded immediately and the weight and dimensions were carefully measured and then placed in plastic to prevent moisture loss and put them at 20 °c and 90%  moisture curing room.
Results and discussion
In this study, the percentage of lime is between 0, 2, 4 percent by weight and nanomaterials percentage is between 0.5 and 1 and 2 percent that can be varied in order to analyze the effect of various additives on the properties of the soil samples. The results indicate that increasing the nano-clay and lime percentage can enhance the optimum specific gravity of soil. The optimum moisture content of sample without any additive is equal to 19.5%. However, samples contain 2% nano-clay and 4% lime, the optimum moisture content increases to 23.5%. But the presence of lime reduces the maximum dry density of soil while adding nano-clay increases this amount. In samples with 4% lime and with no nano-clay, maximum dry density is 17  but in case of lime with 4% and nano-clay with 2% it is increased to 17.5 . In addition, adding lime without the presence of nano-clay only increases strength of soil. When 2 percent of lime is added, the strength of soil increases about 39 percent. As mentioned before, the effect of lime and nano-clay on increasing of unconfined compressive strength is almost the same which means by adding 2% of lime or nano-clay the strength of the soil increases about 40 percent. Using both lime and clay nanoparticles simultaneously (each 2%), a significant increase in strength of soil occurs in approximately 77 percent.
Conclusion
The use of nano-clay and lime improves soil strength parameters. But economically lime is more affordable than nano-clay. Therefore, if you need to increase only unconfined compressive strength, then the nano-clay is not recommended.
When it comes to self-healing in clay, the nano-clay can improve resistance rupture of the soil. By adding 2% of nano-clay in soil, healing of soil resistance after the break and after 24 hours can reach up to 60% of the ultimate strength of the soil. This property can be used to repair of locations that are subjected to internal erosion and scouring.
 
 
Mehdi Jalili, Hosein Saeedirad, Mohammad Javad Shabani,
Volume 14, Issue 2 (8-2020)
Abstract

Introduction
Dispersive soils are problematic and they cause a great many of local damages and destructions in hydraulic structures such as dikes and irrigation channels. The correct identification and recognition of divergence are fundamental measures taken in line with preventing the early destruction of the hydraulic structures. The soil improvement using lime, especially in clayey soils (CL), brings about an increase in the optimum moisture percentage, reduction of the maximum dry unit weight, reduction of swelling potential, increase in the strength and elasticity module. The effect of lime on soil can be classified into two groups, namely short and long-term stabilization. Raise of the soil’s workability is counted amongst the short-term modification measures and it is the most important factor in the early improvement stages. The increase in the strength and stability can be considered as the lime utilization on long-term results occurring during curing and afterwards. Also, according to the reports, swelling and damages occur in the lime-stabilized soil containing sulfate. The effective role of the iron furnace slag has been well recognized in increasing the strength against sulfates and corrosive environment conditions of the mortar containing lime and sulfates.
Material and methods
Adding the slag products of the melting furnaces and lime is a method used to stabilize dispersive soils. The present study makes use of a mixture of clay featuring low plasticity with 1% and 2% lime and slag, for 0.5%, 1%, 3% and 5% of the weight, to improve dispersivity, shear strength and plasticity. The samples were kept in constant temperature and humidity for a day and then were subjected to direct shear, uniaxial strength and pinhole tests.
Results and discussion
It was observed based on pinhole experiment of the initial dispersive soil sample, denoted as D1, that the sample, shown by ND2, containing lime, for 2% of the weight, and slag, for 5% of the weight, turned out to have become non-divergent. The results of the direct shear test showed that the adhesion coefficient of the slag-free samples stabilized using 1% lime has been increased from 0.238 kg/cm2 to, respectively, 0.251 kg/cm2, 0.373 kg/cm2, 0.41 kg/cm2 and 0.48 kg/cm2  per every 0.5%, 1%, 3% and 5% slag added. The adhesion of the samples stabilized using 2% lime as determined in the direct shear experiment were 0.615 kg/cm2, 0.671 kg/cm2, 0.724kg/cm2 and 0.757kg/cm2 per every 0.5%, 1%, 3% and 5% slag added. Also, the internal friction angle of the samples stabilized using 1% lime was found an increase from 14.3° for slag-free samples to 18.11°, 21.3°, 21.86° and 21.92° per every 0.5%, 1%, 3% and 5% added slag. As for the samples stabilized using 2% lime, the internal friction angles were found in direct shear test equal to 23.15°, 23.53°, 23.76° and 24.12° per every 0.5%, 1%, 3% and 5% slag added. The uniaxial strength of the slag-free samples stabilized using 1% lime was found an increase  from 1.0014 kg/cm2 to, respectively, 1.0616 kg/cm2, 1.0782 kg/cm2, 1.2127 kg/cm2 and 1.2246 kg/cm2 per every 0.5%, 1%, 3% and 5% slag added. The uniaxial strength rates has been determined in the direct shear test of the samples stabilized using 2% lime were 1.1367 kg/cm2, 1.1885 kg/cm2, 1.2322 kg/cm2 and 1.2872 kg/cm2 per every 0.5%, 1%, 3% and 5% slag added. The amount of axial strain of the slag free samples stabilized using 1% lime was found decreased from 9.6842% to, respectively, 9.3333%, 9.2683%, 9.6364% and 8.4444% per every 0.5%, 1%, 3% and 5% slag added. Moreover, the axial strain amounts obtained for the samples stabilized using 2% lime were 7.7333 kg/cm2, 7.6316 kg/cm2, 7.1517 kg/cm2 and 4.7619 kg/cm2 per every 0.5%, 1%, 3% and 5% slag added.
The study results indicate that slag and lime have the capacity of improving the studied soil’s dispersivity. Furthermore, it was figured out that adding slag to the soil causes an increase in the soil strength and improves the shear strength parameters. It can be stated according to the observed results that the use of slag, a byproduct of iron smelting industry, as a substitute for a given percentage of lime is effective on the reduction of the clay soil’s divergence potential. The results of the experiments carried out to determine Atterberg limits are suggestive of the idea that the increase in the slag and lime fractions brings about a decrease in the liquid limit and plasticity and improves the plasticity properties of the soil. The reason why the soil plasticity has been reduced after being mixed with lime and slag is the cationic exchange and coarsening of the soil texture. Addition of lime to the soil causes an increase in the plasticity limit and a reduction in the liquid limit. Therefore, the plasticity index is decreased and the plasticity characteristics of the soil are improved. Adding 1% lime to the dispersive soil leads to small reduction of the liquid limit from 32.43% to 31.73%, a small increase in the plasticity limit from 13.42% to 14.66% and a insignificant decrease in the plasticity index from 19.01% to 17.07%.
Rasool Yazarloo, Amin Jamshidi, Seyed Abdolghader Amanzadeh, Abuzar Esfandyaripur,
Volume 14, Issue 3 (11-2020)
Abstract

Introduction
Loess soil is one of the problematic soils that should be improved its geotechnical properties before the project is implemented. Lack of attention to this issue has caused in many problems for civil projects in Golestan province. This has been more evident in some of the rural areas built on this type of soil. Moreover there are many reports regarding different geological hazard such as subsidence, divergence, erosion and landslide in Golestan loess soil. Among the different types of loess soils found in Golestan province, silty loess should be given more attention due to their large extent and being the bed soil of many villages, and many reports of its hazards.
One of the methods for improving soil mechanical behavior and its geotechnical properties is to use additives to reduce geological hazards. Due to the fine-grained structure of loess soils, the application of nanoparticles is more efficient and could result in solving many of the related problems. Nanotechnology is new scientific field which affects many aspects of engineering and in recent years, many efforts have been made to use this new technology in various geotechnical branches.
So far, research has been carried out on the improvement of various soil types with additives such as cement, bitumen, ash, lime and various types of nanoparticles. Nowadays, the use of nanoparticle additives due to reduction of environmental pollution than other additives has a wider application in improving the physical and chemical properties of problematic soils.
In the present study, the effect of nano-kaolinite on strength properties including uniaxial compressive strength, elasticity modulus, cohesion, and internal friction angle of silty Loess in Kalaleh city of Golestan province have been investigated.
Material and methods
In order to carry out the present research, sample of the silty loess soil from Kaleh city of Golestan province was collected and prepared. Then, 0.5, 1, 1.5, 2, 3 and 4 weight percent of nano-kaolinite were added to soil samples. The soil samples were prepared in a natural state (without additives) and with the additive for uniaxial compressive strength and direct shear tests. Strength properties of soil specimens including uniaxial compressive strength, elastic modulus (based on uniaxial compressive strength test), cohesion and internal friction angle (based on direct shear testing) were determined for native soil and its mixture with different percentage of nano-kaolinite. The data were analyzed and the effect of nano-kaolinite on the strength properties of the silty loess soil sample was investigated.
Results and discussion
Uniaxial compressive strength and modulus of elasticity have been increased with increasing amount of nano-kaolinite, and after 2% nano-kaolinite, increase in nano-kaolinite did not have any significant effect on uniaxial compressive strength and modulus of elasticity. The uniaxial compressive strength and the modulus of soil elasticity in the natural state (without nano-kaolinite) are 1.12 and 15.89 kg/cm2 respectively, and when 2% of the nano-kaolinite is added to the soil, the values ​​of these properties are maximal and reached to 1.19 and 18.10 kg/cm2, respectively.
For native soil (without nano-kaolinite), the cohesion value is equal to 0.09 kg/cm2, and with increasing nano-kaolinite from 0.5 to 2%, the cohesion shows an incremental trend and reached to 0.16 kg/cm2. With increasing the additive percent from 2 to 4% the amount of cohesion were constant and equal to 0.16 kg/cm2. The increasing of cohesion can be attributed to the fact that nanoparticles enhanced water absorption of soil particles which caused in better cohesion and also they affected chemical actions and surface electrical charge of soil particles.
Conclusion
The results of the uniaxial compressive strength tests show that adding up to 2 weight percent Nano-kaolinite to the dry soil increases the uniaxial compressive strength and modulus of elasticity of silty loess soil in the Golestan province, which can be due to proper locking between the nanoparticles and soil particles and increased cohesion.
The results of direct shear tests showed that adding up to 2% nano-kaolinite to dry soil increased the cohesion of the soil and consequently increased the shear strength of the soil.
On the other hand, adding the different amount of nano-kaolinite has not changed much in the internal friction angle of the silty loess soil in the Golestan province.
 
 
Habib Shahnazari, Mahmoud Fatemiaghda, Hamid Reza Karami, Mehdi Talkhablou,
Volume 14, Issue 5 (12-2020)
Abstract

The present work is conducted to investigate the effect of texture and carbonate content on internal friction angle of carbonate soils. Carbonate soils are majorly found in the bed of shallow waters and also offshores in tropical regions. Recently there is a huge construction projects including oil and gas extraction platform and facilities, harbors, refineries, huge bridges and other big construction projects in many offshore and onshore areas around the world. One of these area is located on southern part of Iran. We collected soil samples from different parts of northern coasts of Persian Gulf, then the following experiments were performed, carbonate content, three-dimensional grain size, angularity, relative density & direct shear. The results showed that the average of internal friction angle of carbonate soil is higher respect to known silicate sands. This angle is affected by effective grain size, grain angularity, and calcium carbonate content. Based on the experimental results of this study, one of the results was that the internal friction angle of carbonate soils decreases as their effective size of soil aggregates increases.
 


Majid Aslani, Javad Nazariafshar,
Volume 15, Issue 1 (5-2021)
Abstract

Introduction
Stone column installation method is one of the popular methods of ground improvement. Several studies have been performed to investigate the behavior of stone columns under vertical loads. However, limited research, mostly focused on numerical investigations, has been performed to evaluate the shear strength of soil reinforced with stone column. The stress concentration ratio (n) is one of the important parameters that uses in soil improvement by stone column method. Stress concentration ratio is the ratio of the stress carried by stone column to that carried by the surrounding soil. In this paper, the results of a laboratory study were used to examine the changes in the stress concentration ratio when normal and shear stress applied. Direct shear tests were carried out on specimens of sand bed material, stone column material and sand bed reinforced with stone column, using a direct shear device with in-plane dimensions of 305*305 mm and height of 152.4 mm. Experiments were performed under normal stresses of 55, 77 and 100 kPa. In this study, three different area replacement ratios (8.4%, 12%, 16.4%), and three different stone column arrangements (single, square and triangular) were considered for investigation. Loose sand and crushed gravel were used to make the bed and stone columns, respectively. In this study, the equivalent shear strength and equivalent shear parameters measured from experiments were also compared with those predicted by analytical relationships at stress concentration value of 1 and stress concentration value obtained from experiments.
Material Properties
Fine-grained sand with particle size ranging from 0.425 to 1.18 mm was used to prepare loose sand bed, and crushed gravel with particle size ranging from 2 to 8 mm was used as stone column material. The sand material used as bed material had a unit weight of 16 kN/m3 and a relative density of 32.5%, and the crushed stone material used in stone columns had a unit weight of 16.5 kN/m3 and a relative density of 80%. The required standard tests were performed to obtain the mechanical parameters of bed material and stone column material. As the diameters of model scale stone columns were smaller than the diameters of stone columns installed in the field, the particle dimensions of stone column material were reduced by an appropriate scale factor to allow an accurate simulation of stone columns behavior.
Testing Procedure
In this study, large direct shear device was used to evaluate the shear strength and equivalent shear strength parameters of loose sand bed reinforced with stone column. Experiments were performed under normal stresses of 55, 75 and 100 kPa. Two class C load cells with capacity of 2 tons were used to measure and record vertical forces and the developed shear forces during the experiments, and a Linear Variable Differential Transformer (LVDT) was used to measure horizontal displacement. The main objectives of this study was to calculate the stress concentration ratio of stone columns in different arrangement. Stress concentration ratio is the ratio of the stress carried by stone column to that carried by the surrounding soil, and can be calculated using Equation 1. For this purpose, the direct shear device was modified. Two miniature load cells with capacity of 5 kN were employed. The load cells were mounted on the rigid loading plate with dimensions of 305*305 mm2 and thickness of 30 mm, as shown in Figure 1, All achieved data from the experiments including data on vertical forces, shear forces and horizontal displacements were collected and recorded using a data logger, and an especial software was used to transfer data between the computer and the direct shear device. All specimens were sheared under a horizontal displacement rate of 1 mm/min.
Experiments were performed on single stone columns and group stone columns arranged in square and triangular patterns. The selected area replacement ratios were 8.4, 12 and 16.4% for single, square and triangular stone column arrangements. To eliminate boundary effects, the distance between stone columns and the inner walls of the shear box was kept as high as 42.5 mm. In total, 11 direct shear tests were carried out, including two tests on loose sand bed material and stone column material, and 9 tests on stone columns with different arrangements. From the tests performed on group stone columns, 3 tests were performed on single stone columns, 3 tests on stone columns with square arrangement and 3 tests on stone columns with triangular arrangement. Hollow pipes with wall thickness of 2 mm and inner diameters equal to stone column diameters were used to construct stone columns. To prepare the specimens, first, the hollow pipes were installed in the shear box according to the desired arrangement. Then, bed material with unit weight of 16.5 kN/m3 was placed and compacted in the box in 5 layers, each 3 cm thick. Stone material was uniformly compacted to construct stone columns with uniform unit weight.
Results and discussion
  1. The SCR value increases for settlement up to 3 mm and then decreases with increasing the horizontal displacement and then approaches almost a constant value. Results also show that stress concentration ratio decreases with increase of stone column diameter. Results show that the value of stress concentration ratio in square pattern is higher than that in single and triangular pattern. Moreover, results show that stress concentration ratio decreases with increase of normal stress.
  2. The value of the internal friction angle in (peak) state, for loose bed increases from 33 to 40 degrees in square arrangement and in the corresponding state of displacement of 10 % from 30 degrees in a loose bed increase to 32 degrees, for loose sand reinforced with stone column. Shear strength increases with the increase of modified area ratio in all stone column installation patterns in both the peak and the corresponding state of the horizontal displacement of 10%.
  3. For stone columns with the same modified area ratio, the installation pattern has an effective role in defining the shear strength. Group stone columns mobilize higher shear strength compared to single stone columns. Among the installation patterns investigated in this study, stone columns with square arrangement experienced the highest increase in shear strength value while single stone columns experienced the lowest.
  4. The equivalent shear strength values measured from experiments are higher than those obtained from analytical relationships. Accordingly, it is conservative to use analytical relationships to calculate shear strength parameters. It is worth explaining that these relationships assume that the value of stress concentration ratio is equal to 1. Results from this study show that the value of stress concentration ratio should be accurately calculated and used in the relationships.
  5. Comparison between shear strength parameters obtained from experiments and those predicted by analytical relationships shows that in single stone columns, the value of stress concentration ratio should be 3 to 4.5, and in square and triangular patterns, this value should be 6 to 7 and in triangular patterns 4.5 to 5, respectively, to achieve good agreement between experimental and analytical results in peak condition. In horizontal displacement 10% the value of stress concentration ratio should be 2.5 to 3, in single, square and triangular patterns, to achieve good agreement between experimental and analytical results../files/site1/files/151/2.pdf

Shaham Atashband, Mohsen Sabermahani, Hamidreza Elahi,
Volume 15, Issue 2 (9-2021)
Abstract

In coastal industrial areas, in addition to the presence of loose soil, sulfate attack on soil improvement elements, such as soil-cement, is a double problem. Generally, the use of type V cement is recommended as one of the methods to reduce the detrimental effects. Considering the limited resources of this type of cement, firstly to determin the relationship between the cement content and the strength obtained in sulfated environments is one of the important engineering question in this field and secondly, as an alternative option, the use of type II cement which is more available, is suggested to use in combination with suitable additives. The present study pursues the above two goals by making cylindrical soil-cement specimens with sand, water and Portland sulfate resistant cements. Sodium sulfate is used as the sulfate in soil and water. In the research, first of all, the relation between type V cement content and unconfined compressive strength of soil-cement is obtained at 0% to 5% sulfate concentration, which results in a cement content of 400 kg/m3 completely limited the sulfate attack effects in a sulfate concentration of 2%. Secondly, the combination of type II cement with barium chloride and hydroxide was tested. The related results show that the combination of type II cement with barium chloride and hydroxide had higher strengths, about 2.7 to 3.3 times, respectively (in 362 days), than the soil-cement containing type V cement../files/site1/files/152/%D8%A2%D8%AA%D8%B4_%D8%A8%D9%86%D8%AF.pdf
 
 
, , , ,
Volume 15, Issue 3 (12-2021)
Abstract

In this study, due to the landslide in schist rocks, in the wall of Mouteh gold mines, including of the eastern wall of ChahKhatoon mine, it is important to identify the effective factors. Therefore, due to the diversity of schists in Chah Khatoon and Sanjadeh gold mines (two active mines in Mouteh Complex), to survey the mineralogy of schist rocks in Moteh gold mine has been done by identifying important factors in changes in rock strength. Cosequently, 10 schist samples from walls of these mines were considered for mineralogical, XRD studies. In the next step, these schists were subjected to uniaxial compressive strength (UCS) and Brazilian tests to estimate the mechanical properties and quality of rock mass in different zones of mineral walls. The results showed that the UCS and Brazilian index in these schists are directly and inversely related to the SiO2 and Al2O3 contents of the rocks, respectively, as well as the secondary structures.Some factors such as the presence of secondary structures, continuous surface area, particle size, and mineralogical composition play an important role in the failure modes of these rocks. UCS and Brazilian strength of schists vary from 10 MPa to 72 MPa and 1.9 to 10.2 MPa, respectively. The lowest UCS occurs in strongly weathered rocks with low silica content. However, the type of clay minerals is effective in the stability of the mineral wall. Considering the presence of montmorillonite clay mineral in the eastern wall of Chahkhatoun mine, the rock resistance is moderate despite the high percentage of silica. UCS values of wet and dry rock samples containing muscovite and montmorillonite clay minerals were more different from those of other rocks. In this regard, the rocks with Illite clay minerals are more resistant than Smectite and montmorillonite minerals. In general, the resistance of schists depends on various factors such as mineralogy, which is of great importance because of its involvement in the formation of secondary structures.

./files/site1/files/%D8%AC%D8%B9%D9%81%D8%B1%DB%8C_%D9%82%D8%B1%DB%8C%D9%87.pdf

 
Maryam Mokhtari,
Volume 16, Issue 1 (5-2022)
Abstract

In geotechnical engineering, rock mechanics and engineering geology, depending on the project design, uniaxial strength and static Youngchr('39')s modulus of rocks are of vital importance. The direct determination of the aforementioned parameters in the laboratory, however, requires intact and high-quality cores and preparation of their specimens have some limitations. Moreover, performing these tests is time-consuming and costly. Therefore, in this study, it was tried to precisely predict the desirable parameters using physical characteristics and ultrasonic tests. To do so, two methods, i.e. principal components regression and support vector regression, were employed. The parameters used in modelling included density, P- wave velocity, dynamic Poisson’s ratio and porosity. Accordingly, the experimental results conducted on 115 limestone rock samples, including uniaxial compressive and ultrasonic tests, were used and the desired parameters in the modelling were extracted using the laboratory results. By means of correlation coefficient (R2), normalized mean square error (NMSE) and Mean absolute error (MAE), the developed models were validated and their accuracy were evaluated. The obtained results showed that both methods could estimate the target parameters with high accuracy. In support vector regression, Particle Swarm Optimization method was used for determining optimal values of box constraint mode and epsilon mode, and the modelling was conducted using four kernel functions, including linear, quadratic, cubic and Gaussian. Here, the quadratic kernel function yielded the best result for UCS and cubic kernel function yielded the best result for Es. In addition, comparing the results of the principal components regression and the support vector regression indicated that the latter outperformed the former.
Eng. Zahra Soleimani, Dr. Ebrahim Rahimi, Dr. Houshang Khairy,
Volume 18, Issue 1 (5-2024)
Abstract

This article deals with the strength evaluation of concrete obtained by adding different percentages of three types of nanominerals, including nanocalcite, nanobarite and nanofluorite. To measure the velocity of ultrasonic waves and compressive strength of concrete, 15×15×15 cm cube samples were prepared with 7-, 28- and 90-days curing. 10 types of mix  designs with 0.39 water-cement ratio, including the control sample (without additives) and the samples with 0.5, 0.75 and 1% nanominerals were subjected to the mentioned tests. The results showed that the addition of nanocalcite, nanofluorite, and nanobarite with values of 0.75%, 1%, and 0.75%, respectively, have the highest compressive strength compared to the control sample. Although these do not have pozzolanic properties, they play a positive role in increasing the concrete strength by filling concrete voids and due to their high specific gravity, increasing concrete density.
 


Page 1 from 2    
First
Previous
1
 

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb