Search published articles


Showing 6 results for Aquifer


Volume 3, Issue 1 (11-2009)
Abstract

(Paper pages 591-614)
The Zydoun plain experiences semi-arid climatic conditionو and though groundwater quality is not commonly acceptable with respect to drinking, it is used for irrigation. The water withdrawal of water and its increasing trend would probably put the study area into critical condition to meet demand. The main sources of water supply in the region are Zydoun aquifer and Zoreh River. The better quality of groundwater in the extreme southern part of the plain and lower exploitation expenses are the reasons why farmers prefer to use groundwater rather than river water. As a result of over- exploitation from the Zydoun aquifer in the last years water table has been declined. In order to impede critical situation in the area, a detailed study regarding management of groundwater including physiography, meteoro-logy, hydrology, hydrogeology, hydrochemistry and geomor-phology were undertaken. Based on these investigations, a number of ephemeral streams in the southern part of the plain were recognized to be suitable in term of water quantity and quality to secure a part of water demand of the area. One of the optimum methods for long-term use of these water resources is injection of water into ground and withdrawal in required time. to this end, the collected data, were put together and it was found that the most suitable method of artificial recharge was channel modification. At the end, considering consideration, morphological, permeability condition and water demands in the southern part of the Zydoun plain, eleven sites for execution of water resources management were suggested which would annually augment aquifer storage by over one MCM.
Miss Masoumeh Nikbakht, Prof Mohammad Nakhaei, Prof Ata Shakeri, Dr Vahab Amiri,
Volume 16, Issue 4 (12-2022)
Abstract

In this study, the hydrogeochemical and qualitative status of groundwater resources of the Zarabad coastal aquifer in southeast Iran has been investigated. The decreasing order of cations and anions is Na+>Ca2+>Mg2+>K+ and Cl->SO42->HCO3-, respectively. The two most water type are Na-Cl (78%) and Ca-Mg-Cl (22%). The water type, chlorine-alkalinity index, ion ratios, and position of the samples on the Gibbs diagram show that cation exchange (direct and reverse), weathering of silicates and evaporites, and seawater intrusion are the main controlling processes of water chemistry. The ionic ratios of SO42-/Cl-, B/Cl-, and Na+/Cl- indicate that saltwater infiltration increases as the distance from the Rabach River increases, particularly in the northwest and southeast regions. This can lead to a decrease in the quality of water resources. Moreover, the water quality for agricultural use is assessed based on some indices, including electrical conductivity (EC), sodium percentage (Na%), sodium absorption ratio (SAR), residual sodium carbonate (RSC), magnesium absorption ratio (MAR), permeability index (PI), Kelly’s ratio (KR), and USSL and Wilcox diagrams. The results showed that about 60% of the samples had unsuitable quality for irrigation. These samples were located in the northwestern and southeastern parts of the plain. About 40% of the samples have suitable quality for irrigation and are located in the vicinity of the Rabach River.
 

Dr Seyed Yahya Mirzaee, Phd Student Zahra Chaghazardi, Dr Manouchehr Chitsazan, Dr Farshad Alijani,
Volume 17, Issue 1 (3-2023)
Abstract

The Evan plain is located in the Khuzestan province in the southwest of Andimshek city. Groundwater is one of the available water resources for irrigation, drinking, and industry in this region. Due to the importance of examining the ground water quality of the Evan plain, hydrochemical parameters and nitrate pollution have been evaluated. Nitrate is one of the most widespread pollutants of ground water in the world. However, few studies have been conducted on this pollutant in the Evan plain. Therefore, to assess the quality of ground water in this area with emphasis on nitrate pollution, sampling was carried out in September of the water year (1400-1401) from 22 wells in this plain. During the sampling, field parameters (temperature, pH, EC), concentrations of major elements (Ca2+, Mg2+, Na+, K+, Cl-, SO42-, HCO32-, CO32-), and nitrate were measured. The results of the factor analysis demonstrated three influencing factors, namely EC, Na+, K+, Mg2+, Ca2+, Cl-, SO42-  (as the first factor), pH and Hco32- (as the second factor), and NO3- (as the third factor), with a total of 89.72% having the most changes in the Evan plain aquifer. The dominant water type in the Evan plain is sulfate-calcite. Hierarchical clustering analysis shows the three clusters for the regionalization of nitrate data. In general, the changes in nitrate ion concentration in the groundwater of the Evan plain are affected by the size of the soil particles, the depth of the groundwater, and the utilization of chemical fertilizers in the area.
 

Somayeh Zarei Doudeji, Rahim Bagheri, Hadi Jafari,
Volume 18, Issue 1 (5-2024)
Abstract

Groundwater resources in Iran are of particular importance due to the lack of surface water resources, lack of precipitation, high evaporation volume and recent droughts. The first step in identifying and exploiting groundwater resources is its quantitative and qualitative investigation. Neyriz watershed, located in the study area of ​​Qatroiye desert, has 17 piezometers, whose groundwater level has been recorded monthly during the statistical period of more than 12 years. Investigations of the groundwater level and the map of the flow lines show the anomaly of the flow in the south and southwest part of the aquifer, which shows the direction of the groundwater flow contrary to the direction of the topography of the area. In this research, an attempt was made to investigate the cause of this anomaly based on the available information, including piezometer drilling logs, aquifer quality data, and national statistical data. Based on the qualitative information of the aquifer, the electrical conductivity and chlorine values ​​of the groundwater increase in the direction of the topographic slope, which indicates the flow in the direction of the topographic slope. Qualitative charts of Piper, Schuler and Durov also confirm this issue. The level of groundwater in selected exploitation wells for qualitative sampling based on the information of the depth of groundwater in national statistics also indicates the flow in the direction of the topographic slope. Finally, a clay layer with a thickness of 10 to 30 meters was observed in the drilling log of the piezometers in the south and southwest of the aquifer. Examining all the results shows that the existing aquifer is probably a double-layered aquifer, where the flow direction in the upper layer is in the direction of the topographic slope and in the lower layer is against it, and the piezometers of the south and southwest parts penetrated the lower aquifer. In order to confirm the desired hypothesis, it is suggested to carry out geophysical studies in the area or to dig exploratory wells.

Kamal Ganjalipour, Reza Azimi, Mojtaba Moradi,
Volume 18, Issue 1 (5-2024)
Abstract

In determining the water that can be allocated for different uses, including agriculture (as the main consumer), the most important step in this era is the proper management of groundwater resources. The observance of water consumption within the limit of allocated water ensures that the consequences of the exploitation of groundwater resources and the sustainability of development are guaranteed, and operators use technological methods to increase the efficiency of using water resources for more production in proportion to the amount tend to available water. In this article, first, the method of calculating the water allocated to the agricultural sector in the country has been studied and criticized. In this study, it was found that in the formula for calculating the current allocated water, the component of agricultural return water as an effective parameter causes a huge error in the calculation of allocated water. Then, a new formula for the calculation of allocated water was proposed, and an attempt was made to correct and apply the effect of the input component of agricultural return water on the amount of allocated water based on the calculation of allocated water in the new proposed method, taking into account the aquifer capacity based on the parameters of the water resources balance.

Dr Sepideh Shakour, Dr Manouchehr Chitsazan, Dr Seyed Yahya Mirzaee,
Volume 18, Issue 2 (9-2024)
Abstract

One of the appropriate ways to prevent groundwater pollution is to identify vulnerable aquifer areas. The Dezful-Andimeshk Plain has two landfills that do not comply with the necessary standards for waste disposal and a river that recharges the aquifer, which can be potential pollutants for the aquifer. Therefore, evaluating the pollution potential of this aquifer is considered a necessity. To achieve this goal, for the first time in this area, the assessment of the aquifer pollution potential was carried out based on the intrinsic vulnerability (DRASTIC) and specific vulnerability (DLR), and finally, the potential contamination (PC) in the region was evaluated.. Based on the results, the value of the inherent vulnerability index ranges from 106 to 162 and has two vulnerability classes: moderate and high. The high vulnerability is related to the western margin of the plain and near the outlet of the plain, as well as in the middle of the plain with a northeast-southwest trend. The low vulnerability is associated with the northern and southern parts of the region. The specific vulnerability index ranges from 25 to 75, which, based on expert opinion, is classified into two classes: low and medium vulnerability. The highest intrinsic vulnerability is in the middle of the plain and around the Dez River. According to the results, the aquifer's PC ranges from 130 to 207 due to specific and intrinsic vulnerabilities. It is classified into three classes: medium, high, and very high, mainly affected by the river, land use, soil, and hydraulic conductivity.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb