Search published articles


Showing 2 results for Equivalent Linear Method

, ,
Volume 7, Issue 1 (8-2013)
Abstract

Evaluation of ground response is one of the most important issues that should be considered in seismic geotechnical engineering field. Alongside the earthquake path associated to regional soil, generally earth movement in places with soft soil is greater than the movement in places with harder soil. This paper is focused to identify local soil condition of Ardekan city which influences on earthquake wave shaking. Therefore after drilling boreholes, implementing geotechnical investigations and down hole geophysical tests, the soil layer characteristics and thicknesses have been obtained. Then shear wave velocity along with soil density have been determined. With using these data it is developed a shaking geotechnical models for different city regions. Finally the ground movement parameters have been determined by   the available data obtained such as density, wave velocity along with using the equivalent linear method employing EERA program. This work was prepared for the return period of 75, 475 and2475 years. It is found that northwest region of city has the most amplification in comparison to other regions.
Mohammad Adampira, Hamid Alielahi, Mehdi Panji, Hamid Koohsari,
Volume 10, Issue 2 (11-2016)
Abstract

Due to the increasing importance of geomorphologic conditions on the seismic ground response, the effect of liquefiable soils on seismic ground surface response is discussed. At first, the equivalent linear analysis based on total stress model in the frequency domain is carried out and then the nonlinear analyses based on total stress, effective stress model and considering the pore water pressure development in time domain are done in order to evaluate the differences between the several types of ground response analysis methods. DEEPSOIL.Ver5 software is used based on the latest achievements and various techniques in both solution domains. LNG port project in Assaluyeh, situated in south of Iran, is considered as a case study. Due to lack of the real data recorded near-field fault at the project site, the simulated method is used in order to create the artificial earthquake. Also three far-field earthquakes have been selected based on conventional seismic hazard studies for the seismic ground response analysis. Then, in order to better understanding of the obtained responses, the resulted responses spectra are compared with the acceleration design spectra provided in some valid codes. The result of this study indicates that the pulse effect in the horizontal component of acceleration perpendicular to the fault plane direction, affects severely the surface ground response of the near-field earthquake. The obtained results of the nonlinear modeling of the soil with excess pore water pressure build-up in the time-domain are extremely different from those of frequency-domain responses based on the equivalent linear method. In addition, because of the inherent linearity of equivalent linear analysis which can lead to spurious resonances in ground responses, the peak ground acceleration in the time-domain is lower than the frequency-domain.



Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb