Search published articles


Showing 11 results for Fault


Volume 3, Issue 2 (4-2010)
Abstract

(Paper pages 697-716)
Silakhor Brojerd area is between high Zagros zone and Sanandaj-Sirjan zone and is one of the seismic areas, with high frequency of occurrence and medium magnitude and sometimes high magnitude, in Iran. Area of maximum destruction and fault plane solutions show a NW-SE trend. Observation of aftershock distribution, caused by earthquake of 1384/2/31, on the region delineated that most of them have occurred in the epicenter area of the main shock, on Ghale-Hatam fault. Also most of aftershocks, caused by earthquake of 1385/1/13 in Brojerd, have occurred in epicenter area of the main shock on Doroud fault. Moreover, focal mechanisms of earthquakes, are right lateral strike-slip with some normal or reverse dip-slip. These different solutions, next to each others indicate partitioning in this area of Zagros.
M Kordavani, N Hafezi Moghadas, Ramazan Ramazani Omali,
Volume 8, Issue 4 (3-2015)
Abstract

The Minab (Esteghlal) dam site is located in east of Minab city in Hormozgan province. The Minab active fault cross the reservoir of dam and have an important role in leakage from the reservoir. The joint study of area in ten stations around the reservoir of dam display the four main joint sets. For assessment of leakage of reservoir, the permeability of rock masses outcrops in the reservoir is estimated by hydraulic conductivity HC experimental model. For this, the RQD, GSI and other characteristics of rock mass around the reservoir were measured in field studies. The results show that the permeability of embankments changes from 9.14×10-6 up to 2.02×10-5 m/s. Also the water lost for three different condition of minimum, mean and maximum level of water table is about 0.14, 0.20 and 0.29 m3/s. The results indicate that the discontinuities with trend of east-west and northeast-southwest and also shear fault zone of Minab have main effects in leakage of reservoir.
Alireza Farrokhnia, Ali Sorbi,
Volume 9, Issue 2 (9-2015)
Abstract

The studied region in this research (Alborz province) is structurally located in Alborz poly_orogenic system of northern Iran. The purpose of this research is combining the remote sensing and geology sciences to show fault lineaments by analyzing satellite data in a vast region and also comparison between lineaments layer and recognized faults in geology maps. Firstly, two scenes of Landsat ETM+ satellite images with 164-35 and 165-35 numbers were mosaicked and also according to coordinates of research area (46 30´ to 48 east longitude and 34 to 35 north latitude degree) have been crop. Then with remote sensing methods such as combination of bands, filtering, NDVI index to reconstruction the vegetation, principal components analysis (PCA) and band relativity in gray scale and color images  have been analyzed the satellite images. Finally, by using the above mentioned methods, the map of fault lineaments and map of lineaments density for Alborz province have been prepared and compared with recognized faults.
G.r. Noori, M. Balo,
Volume 9, Issue 3 (12-2015)
Abstract

Buried pipeline system form a key part of global lifeline infrastructure and any significant disruption to the performance of these systems often lead to undesirable impact on regional business, economies or the living condition of citizens. In this paper the response of buried pipelines at fault crossings are studied. A fault movement can be resolved into an axial component, a lateral component in the horizontal plane, and a vertical component. Applying finite element method, the effect of various parameters such as anchored length, internal friction angle of surrounding soil, fault movement and fault crossing angle on the behavior of buried pipeline were studied. Nonlinear behavior for pipe and surrounding soil are assumed using beam-spring model. Results showed an increase in internal friction angle of surrounding soil increases strain and also normalized bending moment and axial force. Comparing bending moment at friction angle of 20° and 40° shows about 30% differences with certain crossing angle we can prevent producing large strain and bending moment on pipeline
Ata Aghaei Araei1, Nahid Attarchian, Ahmadreza Ghodrati Ghazaani, Hossein Haddad, Amir Saeid Salamat, Hossein Hasani,
Volume 13, Issue 4 (12-2019)
Abstract

Introduction
One-dimensional site response analysis is widely performed to account for local site effects during an earthquake. Most of these approaches assume that dynamic soil properties are frequency independent. Laboratory test results as well as in-situ testing show that shear modulus and damping ratio are dependent on the frequency of loading. Although the amplification factor at ground surface with respect to frequency dependent dynamic properties of mixed alluvium materials under different near-fault motions with various velocity period is recognized, it is not well characterized and quantified.
Material and analysis methods
In this study, the tests results of samples which obtained from the drilling borehole (BH14) form Pardis city in Iran, are used. The soil is classified as clayey of high plasticity/clayey sand (CH/SC) and almost uniform and similar in the whole log profile.
Shear modulus and damping ratios versus shear strain curves (ASTM D3999) of CH/SC natural materials at effective confining pressures of 1, 2 and 5 kg/cm2 with frequency of 0.5, 2, 5, and 10 Hz were used in one dimension response analyses using EERA Code.
Generally the damping ratio versus shear strain of the studied materials under low loading frequency (i.e. 0.5 Hz) almost falls in the range identified in literature. However, at higher loading frequencies (5 and 10 Hz) the damping ratios completely fall above the known upper bound trend. It is observed that, in general, the G and D values increase as loading frequency increases. Moreover, at certain strain G/Gmax ratio decreases as loading frequency is increased.
Different dynamics behaviour curves were used in analyses, in isotropic consolidation conditions. In order to assess the amplification, acceleration spectra, acceleration spectra ratio, coefficient of B, at ground surface under eight well-known near-fault ground motions, 1728 one dimensional analyses were carried out with EERA code. The analyses have been performed for three base acceleration levels, namely, 0.1 g, 0.35 g and 1 g, using the simple time history scaling method. Field and laboratory test results of shear wave velocity were used in the analyses.
In this study, several well-known near-fault motion records are utilized for ground response analyses. Near-fault earthquakes records were selected from the strong motion database of the Pacific Earthquake Engineering Research Center (PEER) and Iran Strong Motion Network (ISMN) for specific reasons of location of the near faults sites.
In current building codes, the upper 30 m soil deposits overlying the higher impedance earth crust are regarded as the most relevant and significant in characterizing the seismic behavior of a site. Therefore, it is useful to accomplish investigations for obtaining their amplification and spectral acceleration for 30 m and even thicker (e.g. 60 m, for usual deep excavation in Iran), in order to have economical and safe designs and constructions.
Results and discussion
Figure 1 presents a comparison of normalized spectral acceleration (B factor) versus period for 30 m and 60 m thick profiles and Vs testing for frequencies dependent and independent analyses under input base acceleration of 0.35g for longitudinal component of used earthquakes. B factor of Iranian Standard 2800 and UBC97 also has been presented in the figure. The spectral acceleration at short period for frequency dependent analysis is higher than that of the frequency independent analysis. The  increases in frequency dependent analysis and higher thick profile (i.e. 60 m).
Conclusion
Results show that the effect of loading frequency has a considerable influence on the acceleration response at the ground surface. For both 30 m and 60 m soil columns, the increase of the loading frequency, decreases the amplification factor especially in the short period zone of the spectra. Based on the acceleration response spectra of near field strong motions derived for soils types of I and IV in this study, the period corresponding to  in the design spectrum of Iranian Standard 2800 should increase to 0.5 and 1.4, respectively. Therefore, selection of the appropriate G and D curves measured at frequency similar to those of the anticipated cyclic loading (e.g. seismic) has a paramount importance../files/site1/files/134/1.pdf
Maryam Mokhtari, Kazem Barkhordari, Saeid Abbasi Karafshani,
Volume 13, Issue 5 (12-2019)
Abstract

In recent years, with the growing use of the nailing method for stabilizing excavation walls, there has been a need for a comprehensive investigation of the behavior of this method. In the  previous studies, the behavior of nailed walls has been investigated in static and dynamic states and under different conditions. However, due to the different feature of near-field ground motions, it is  necessary to study the effect of these motions on the behavior of the nailed walls. Near-fault ground motion is significantly affected by the earthquake record direction and the rupture mechanism. So, in this study, to compare the effects of near-field and far-field ground motions, a two-dimensional (2D) soil- nailed wall was considered. PLAXIS 2D was used for the modeling of the soil-nailed wall system. An excavation with a dimension of 10 meters in height was taken into the account. In this study, 10 records (Five fault-normal near-field ground motion records and five far-field ground motion records), were recorded  on the rock and  applied to the model. These ground motion records were derived from the near-fault ground motion record set used by Baker. These records were scaled to the Peak Ground Acceleration (PGA) of 0.35g and then applied to the bottom of the finite element models. Mohr-Coulomb model was then used to describe the soil behavior, and Elasto-plastic model was employed for the nails. A damping ratio of 0.05 was considered at the fundamental periods of the soil layer. The results showed that the  generated values of bending moment, shear force and axial force in nails under the effect of the near-fault ground motions were  more than those in the far-ault ground motions. These values were  almost equal to 23% for the maximum bending moment, 30% for the  shear force,  and 22% for the axial force. The created displacement under the effect of near-fault ground motions was  more than that in the far-fault since a higher energy was  applied to the model in the near-field ground motions during a short time (pulse-like ground motions). In contrast, in the far-fault ground motions, due to the more uniform distribution of energy during the record, such pulse-like displacements were not observed in the system response. Increasing in nail length and soil densification, decreases the displacement of the soil-nailed wall but does not change the general behavior of the soil under the effect of near-field ground motions. Based on the obtained results, for a constant PGA, there were  positive correlations between the values of the  maximum displacement on the top of the wall and  the PGV values of near-fault ground motion records. However, the mentioned correlations were  not observed in the case of far-fault ground motions.


Mohammadkazem Amiri, Gholam Reza Lashkaripur, Siavash Ghabezloo, Naser Hafezimoghadas, Mojtaba Heidaritajri,
Volume 14, Issue 3 (11-2020)
Abstract

Introduction
CO2 injection in deep geological formations, such as depleted oil and gas reservoirs, in addition to the environmental benefits, is one of the effective method for enhanced oil recovery (EOR) as tertiary EOR. Presence of reservoirs with a pressure drop which require injection of gas in the southwest of Iran and having the technical and environmental effects of CO2 injection have created a huge potential for CO2 injection to EOR in this region. In the first step, to perform CO2-EOR, the geomechanical assessment is needed to find out pore pressure, in-situ stress magnitudes and orientations and fractures and faults conditions. In this paper, the initial in-situ pore pressure is predicted using modified Eaton method for 47 wells in the length of the study field and calibrated using repeat formation test and mud pressure data. In-situ stress was obtained by the poroelastic method for 47 wells in the length of the study field and calibrated using leak off test and extended leak off test. Then, the orientation of in-situ stresses is obtained based on image logs. Hydraulical and mechanical activities of fractures and faults were performed by critically-stressed-fault hypothesis
Material and Methods
In this paper, the initial pore pressure is calculated using modified Eaton method and other corrections that are proposed by Azadpour et al. (2015). The estimated initial pore pressure is validated using mud weight pressure (Pmw) and repeat formation tester (RFT) data. In-situ stresses are composed of three orthogonal principal stresses, vertical stress (SV), maximum horizontal stress (SH), and minimum horizontal stress (Sh) with specific magnitude and orientations. The magnitude of SV is calculated by integration of rock densities from the surface to the depth of interest. The poroelastic horizontal strain model is used to determine the magnitudes of the SH and Sh. Then, the estimated minimum horizontal stress from poroelastic horizontal strain model is validated against direct measurements of LOT and XLOT tests. The orientation of breakouts was determined based on compressively stressed zones observed in the UBI log and using Caliper and Bit Size (BS) logs. The hole elongates perpendicular to the SH and breakouts develop at the azimuth of Sh. Fractures and faults reactivation analyses are very important, they can potentially propagate upwards into the lower caprock and further through the upper caprock due to CO2 injection. Fractures and faults identification were performed based on image logs. Based on performed seismic interpretations by NISOC (National Iranian South Oil Company), 15 faults have been detected in the field. Fractures and faults conductivity and activity in the current stress filed affect on fluid flow and mechanical stability or instability of the CO2 injection site. Critically stressed fault hypothesis, introduced by Barton et al. (1995), states that in a formation with fractures and faults at different angles to the current stress field, the conductivity of fluids through their apertures are controlled by the interplay of principal stress orientations and fracture or fault directions. Hence, conductive and critically stressed fractures and faults in the current stress field were evaluated using critically stressed fault hypothesis. Fractures and faults are plotted in normalized 3D Mohr diagrams (normalized by the vertical stress), therefore conductive and critically stressed fractures and faults were determined.
Results and discussions
The maximum distribution of initial pore pressure was 20-25 MPa in the field and the average of initial pore pressure was 25 MPa in the field. Unlike the World Stress Map, the stress regime is normal in the reservoir. Because the Kazeroon fault and Dezful Embayment act as a strike-slip tensional basin, resulting in the subsidence of Dezful compared with other regions. The frequency distribution of calculated in-situ stress in 47 studied wells in the length of the field has been presented. The maximum frequency distribution of SV, SH and Sh were between 60-70, 50-60 and 30-40 MPa, respectively. A large amount of fracturing is observed in 20-25 m below the caprock. Based on the continuity of their low amplitude traces on the acoustic amplitude image of UBI, fractures are classified into 4 classes: discontinuous-open, continuous-open, possible-open and closed fractures. OBMI and UBI image logs processing were performed in 7 wells. As can be seen from the image log, and caliper analysis the most dominant strike of SH around the well is 27 and Sh strike is 117◦. These have two dominant orientation, some faults are along the strike of the Zagros fold-thrust belt (NW-SE) and the others are perpendicular to the Zagros fold-thrust belt strike (NE-SW).
Based on the normalized 3D Mohr diagrams it is clear that the fractures and faults that are oriented to the SH will be the most permeable, because the faults and fractures experience the least amount of stresses in the direction of SH and they have minimum resistance to flow in this direction, therefore will have relatively high permeability. Also, results showed the faults number 15, 6, 10 and 2 will be the most dangerous faults during CO2 injection.
 
 
Hojjat Ollah Safari, Hamed Rezaei, Afsaneh Ghojoghi,
Volume 14, Issue 3 (11-2020)
Abstract

Introduction
The landslides, as a natural hazard, caused to numerous damages in residential area and financial loss. In many cases, we can forecast the occurrence probability of this natural phenomenon with using of detail geological and Geomorphological studies. This seems that one of the most effective parameters in landsliding phenomenon is structural parameters, especially faulting in rocky outcrops. For verifying this hypothesis, the Nargeschal area, as high potential of hazardous area, is selected as case study for investigation on influences of faulting on landslide occurrence probability. Many large composite landslides were happened in 2016 and hence, this area is enumerated an active zone of landsliding. This area with geographic attitude 55° 09' 06" to 55° 27' 21" Eastern Longitude and 36° 54' 23" to 37° 05' 15" Northern Latitude located in south of Azad shahr (in Golestan Provinces) placed in Northeastern of Iran.
Geological studies indicate that this area located in northern limb of Alborz fold belt (as a young fold-thrust belt with 900 km length) which formed in late Alpine orogenic events by convergence Afro-Arabian and Eurasian plates. In this zone, the structures have main NE-SW trends with main active faults such as Khazar and North Alborz faults, as reverse faults with north-ward movements. The remnant part of Paleotethyan rocks (which transported from collision zone toward southern part by low angle thrusts) located between these faults and formed the mountain-plain boundary hills.
Material and Methods
In this research, we investigated on effective parameters in landslide occurrence probability of Nargeschal area with using of remote sensing techniques, GIS environment abilities and complementary field investigations. Therefore, we have prepared the seven data layers of geological and morphological effective parameters which are affected on landslide probabilities. These data layers consist of: lithology of outcropped rocks, faulting condition, topographic slopes categorizes cultivation circumstances, seismicity condition, spring population (ground water condition) and surveyed occurred landslides. Then, the content of each data layer is weighted and classified into five classes in GIS environment. Finally, the content of each pixels in all of 7 layers are algebraically summed and recorded as an attributed table. Hence, the landslide hazard zonation map was prepared by drawing the isopotential surface map on the basis of quantities of attributed table by using of GIS functions in Arc view 3.2 software.
Results and Discussion
The results of this research illustrate that a high risk zone is located in central part of area as an oblique broad-stripe zone with NE-SW trend [6]. This zone is correlatable with high density of fractures zone and high population of springs and earthquake focus and also, taken place in Shemshak formation with shale, marl and siltstone rocky outcrops (upper Triassic- Jurassic in age). 
Also, the results of investigations on influences of structural parameters (especially faulting) in landslide hazard demonstrated that faults are indirectly impressed on this hazard probabilities via formed the high slope topography, poor strength faulted rocks, locating of spring presences and creation of seismicity, and hence, defined the spatial pattern of landslides.
Conclusion
Nargeschal area in Northern limb of Eastern Alborz is selected as case study for investigation on temporal relationship between Faulting and Landslides. The following conclusions were drawn from this research.
- It seems that the fault surface plays the role of rupture planes for landsliding.
- The structural factors also increased the ground slope and then, the close relationship is formed between landslides and faults.
- The results demonstrate the genetically relationships between landslides and faults in macroscopic scale in Nargeschal area.
 

Ali Saket, Seyed Mahmud Fatemi Aghda, Ahmad Fahimifar, Hossein Sadeghi,
Volume 14, Issue 4 (12-2020)
Abstract

Introduction
 Analysis of time, location and magnitude of foreshocks and aftershocks has been one of the most important cases for experts in various scientific fields such as: seismology, structural engineering and crisis management, and other interrelated fields. Since this analysis and the result of studies on seismotectonic and cases of earthquakes help us identify the foreshocks and aftershocks with the goal of decreasing losses and nervious stress of the injured community in quake-stricken areas and skilled crisis management. The cause fault of earthquake plays the important role in foreshocks and aftershocks of the earthquake. So, study on fault behaviour is a suitable method for analyzing and routing the basic parameters of foreshocks and aftershocks. Also, foreshocks and aftershock are important parts of any earthquake in a seismic area. The analysis of the basic parameters of the foreshocks is one of the most practical researches for reducing the risk of earthquakes. The identification of behavioral pattern of foreshocks can help researchers detect the active fault conditions for the occurrence of earthquakes in different areas. The present study is concerned with the study of behavioral patterns earthquakes, foreshocks, and aftershock of Zohan earthquake. Experience of large aftershocks in different parts of the world indicates that, following earthquakes and depending on seismic-tectonic conditions, large aftershocks are likely to occur in the earthquake-effected zone, which will aggravate the damage caused by earthquakes (Omi et al., 2013). The main factor contributing to the worsening of damage caused by aftershocks is the performance of structures that are weakened but not destroyed by main earthquakes and are, thus, highly likely to be destroyed by large aftershocks (Saket and Fatemi Aghda, 2006).
Material and methods
The present paper makes use of data collected in a real earthquake and similar expriences in other earthquakes for presenting a practical pattern for predicting primary earthquake patterns, determining the location, magnitude, and time of aftershocks. The target of this case is decreasing the effects of earthquake. To this end, we used the results from studies on basic parameters of foreshocks and aftershocks of Zohan earthquake, and 2012 earthquake in South Khorasan province. The rationale for selecting the aforementioned studies is: location of event, the Zohan earthquake, had been identificated as an area with high risk for the occurrence of earthquakes, although there has been no wide-scale earthquake in this area in the last two decades. These conditions are important causes for more concentrated studies on this area because there is a high chance for wide-scale earthquakes striking this area.
Result and Discussion
In this part of research, we conduct a study on the location, magnitude and depth of foeshocks. Some of the world-wide research suggested that these data can help to predict the time of  mainshocks. Studies conducted on the variations of frequency in foreshocks can follow this goal.
In this paper, the available statistical data such as periodical variations of seismicity in the weeks leading up to the main shock can be used as a tool for estimating the approximate time of a future important earthquake. The weekly variations of seismicity before Zohan earthquake indicate a relative increase and then decrease within a 100 km radius around the epicenter of the main shock.
 
Table 1: Variations of frequency of foreshock based magnitude before Zohan earthquake
Week before main shock Frequency of foreshock in the Radius of 100Km from main shock Frequency of foreshock(with M>2.5) in the Radius of 100Km from main shock
6 0 0
5 1 1
4 1 0
3 2 0
2 5 3
1 2 0
 
Studies on numerous earthquakes in Iran and other regions in the world show that the distribution of aftershocks can be related to fault type or the direction of principal stress (Saket and Fatemi Aghda, 2006) and (King et al., 1994). Whereas maximum Coulomb stress change is related to maximum principal stress in earthquakes, the concentration of aftershocks can coincide with the direction of maximum principal stress (σ1) of the causative fault in mainshock. Considering the direction of maximum principal stress and its adaptation to the scattering of aftershocks, the above hypothesis is confirmed.
Also studies on frequency changes and seismic quiescence of small aftershocks help us in predicting future aftershocks. The results the of presented research by Itawa (2008) on the World earthquake catalogue suggest that seismic quiescence theory is true for different regions of the world. Based on the results of the  study mentioned above, this case can be used as a tool for predicting large aftershocks in Zohan earthquake.

Fig 1. Adaptation of direction of maximum principal stress with scatering of the aftershocks of Zohan earthquake. a: direction of maximum principal stress (σ1) of the causative fault in mainshock. b- scaterring of the aftershocks
Table 2: Seismic sequience versus magnitude of aftershocks
Row Seismic Quiescence for aftershocks Aftershock Magnitude Data and Time of aftershocks
1 13 3.0 2012/12/05
17:21:03
2 36 3.4 2012/12/05
17:57:03
3 161 3.1 2012/12/05
20:38:09
4 3906 3.9 2012/12/08
13:44:19
In addation, frequency of aftershocks and certain time distance (seismic quiescence) between their can use precursors for detecting the time of large aftershocks. The relevant analysis in this study showed that methods such as: time series beside seismic quiescence can help in conducting a more accurate time forecast of large aftershocks.
Conclusion
  • The results of this research suggest that we can identify some of the charactristics of the main shock by focusing on location, magnitude and depth of foeshocks.
  • In Zohan earthquake, the direction of maximum principal stress is adpated to the scattering of aftershocks, and this case suggests that there is a specific relationship between them.
  • The relevant analysis in this study showed that the methods such as: time series beside seismic quiescence can help conduct a more accurate time forecast of large aftershocks../files/site1/files/144/saket.pdf

Naser Hafezi Moghaddas, Abolfazl Soltani,
Volume 15, Issue 2 (9-2021)
Abstract

Safety design of structures concerning surface faulting effects such as shear and differential subsidence are very costly and in some cases are impossible. Then the appropriate approach for encountering surface faulting is to determine a suitable fault-avoidance zone. In this study, firstly the theorem of avoidance fault zone is presented, and then the setback area from the fault zone of South Mashhad fault is proposed. Recent studies show that South Mashhad fault is a right-lateral strike-slip fault with a normal component that cut the Quaternary sediments. In this work, the average slip rate and estimated return period for South Mashhad fault are 0.59 mm/yr and 2930 years, respectively.  Accordingly, the proposed avoidance zones in the south (hanging-wall) and north (foot-wall) of the fault are 80 and 70 meters, respectively. Considering the avoidance zones, many residential and other important structures are located in the avoidance zone of the South Mashhad fault../files/site1/files/152/%D8%AD%D8%A7%D9%81%D8%B8%DB%8C.pdf
 

 
Dr. Seyed Hossein Hosseini Lavassani, Mr. Hamed Alizadeh, Pro. Ali Massumi,
Volume 16, Issue 1 (5-2022)
Abstract

Many researches have been currently conducted on the effects of fault distance on structures revealing that their seismic response can differ according to their distance from the fault. Suspension bridges due to their long period and high flexibility can be more sensitive to this phenomenon, especially in vertical vibration. Since the engineers tend to use longer spans, the length factor should be studied more accurately. In this paper, the effects of length factor on the seismic response of the suspension bridge under near and far-fault ground motions were addressed. The Vincent Thomas and Golden Gate suspension bridges as short and long ones, respectively, are selected as the case studies. The seismic responses of two bridges under five main worldwide ground motions contained both near and far-fault ones, with the same peak ground’s acceleration, are evaluated. The results indicated that the response of both bridges to the near and far-fault ground motions are perfectly different. Short span suspension bridges are vulnerable to near-fault ground motions, whereas long span ones are completely susceptible to both near and far-fault ground motions, and by increasing the length of span, the sensitivity of bridge was increased against far-fault low frequency excitations. Also, maximum displacement responses of spans in both bridges did not increase by maximizing peak ground’s acceleration.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb