Search published articles


Showing 2 results for Finite Element Model

P Naghshin, H Shahir ,
Volume 10, Issue 2 (11-2016)
Abstract

Soil nailing is a prevalent method for temporary or permanent stabilization of excavations which, if it is used for permanent purposes, the seismic study of these structures is important. There are a few physical models, with limited information available, for the study of behavior of soil nailed walls under earthquake loading. Numerical methods may be used for the study of effects of various parameters on the performance of soil nailed walls, and this technique has been used in the current paper. In this research, the effects of various parameters such as the spacing, configuration, and lengths of nails, and the height of wall on seismic displacement of soil nailed walls under the various earthquake excitations were studied. To investigate the effects of the configuration and the lengths of nails on the performance of these structures, two configurations of uniform and variable lengths of nails have been used. To study the effects of the spacing between nails and the height of the wall the spacings of 2 and 1.5 meters and the heights of 14, 20, and 26 meters have been considered. The seismic analysis has been carried out using the finite element software Plaxis 2D. To analyze the lengths' of nails, it was assumed that the safety factors of stability of different models are constant, and the limit equilibrium software GeoSlope was used. After specification of the lengths of nails based on constant safety factor of stability, the deformations of the models under several earthquakes records were analyzed, and recommendations were made on minimizing the deformations of soil nailed walls under seismic loading.


Mahnaz Firuzi, Mohammad Hossein Ghobadi, Ali Noorzad, Ehsan Dadashi3,
Volume 13, Issue 5 (12-2019)
Abstract

Slope stability could be a major concern during the construction of infrastructures. This study is focused to analyze the slope stability of Manjil landslide that was located 41+400 to 42+200 km along Qazvin-Rasht freeway, Iran. The Manjil landslide, which had 168 m long and approximately 214 m wide, was occurred due to inappropriate cutting in June 2013 and led to destructive and closure of freeway. Slope stability analysis was carried out using a finite element shear strength reduction method (FE-SRM). The PHASE2D program was utilized in order to model the slope cutting and stability of landslide. Slope angle was flatted with 3H:2V geometry and stabilized with piling. The results indicated safety factors of 1.95 and 1.17 in the static and pseudo-static states, respectively, while the maximum bending moment with single pile (SP) in the pseudo-static state was 5.69 MN. Maximum bending moment of the pile around the slip surface was significantly large and more than the bending moment capacity of the pile. Due to the large bending moment on the pile, pile-to-pile cap connections (two pile group: 2PG) should be designed at the toe of the slope. The obtained results showed reduction of this parameter to 2.48 MN. Thus, it can be concluded that 2PG is a suitable stabilization method for the Manjil landslide.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb