Search published articles


Showing 19 results for Index


Volume 1, Issue 3 (3-2004)
Abstract

(Paper pages 255-270) The groundwater protection is important in order to have a good management of water resources. The Ghazvin plain situated in west of Tehran, Iran has a critical situation in which the groundwater level declines and aquifer pollution has been observed in recent years. In this research, for evaluating the groundwater vulnerability, DRASTIC index has been used for this plain. Then, a Geographic Information System (GIS), ILWIS has been used to create a groundwater vulnerability map. The results of this study estimated DRASTIC value to be in the range of 35-108 using general DRASTIC value, almost 11% of the study area was recognized to have low feasibility, 43% moderate and 37% high and 10% very high feasibility for pollution. The DRASTIC results show a good adaptation between increasing the nitrate rate and the DRASTIC index
, Ar Taleb Beydokhti, A Asiabanha,
Volume 6, Issue 1 (11-2012)
Abstract

Slake durability of rocks is an important engineering parameter for evaluating deterioration of rocks in chemical and physical agents that are related to mechanical properties of rock. The main purpose of this study is to assess the influence of the number of drying and wetting cycles under variable pH conditions and controls of mineralogical composition on durability. For this purpose, five different types of tuff were selected from different parts in north Qazvin city. The samples were subjected to multiple-cycle slake durability testing with different pH values solution. Also the slake durability tests in saturated condition on samples, petrographical analyses and basic physical - mechanical test were performed. In addition, to assess the influence of mineralogical composition on durability, the mineral contents of the original material and the material passing from the drum of the slake durability apparatus after fifteen cycles were also determined by XRD analyses. It was concluded that the slake durability of tuff is independent of the pH in acidic solution circumstances. Mineralogical composition, fabric and weathering rate are considered to have a greater influence on the slake durability of tuff. A strong relationship between the point load strength and the fifteenth-cycle slake durability index is found in the rock types studied.
Majid Dashti Barmaki, Mohsen Rezaei, Amir Saberi Nasr,
Volume 8, Issue 2 (11-2014)
Abstract

This paper has evaluated the groundwater quality index of Lenjanat aquifer. Water quality index as a unique index is presented to describe overall water quality conditions using multiple water quality variables. Physical and chemical data of 66 water samples were used in this study. The results have been obtained by Comparing the qualitative features with the World Health Organization (WHO) standard and Industrial Research of Iran (ISIRI) standards. In calculating GQI, 7 parameters, including calcium (Ca), magnesium (Mg), sodium (Na), chlorine (Cl), sulfate (SO4), total dissolved solids (TDS) and nitrate (NO3) have been used. Groundwater quality index shows the medium to relatively high groundwater quality in the study area. Minimum and maximum value of the index is calculated as respectively 55 and 93. Land use map shows that along the Zayanderood River and around the location of rice paddies, water quality reaches to the lowest quantity. Optimum index factor technique allows the selection of the best combination of parameters dictating the variability of groundwater quality.
Maryam Hadi, Rasol Ajalloeian, Amir Hossein Sadeghpour,
Volume 8, Issue 3 (12-2014)
Abstract

One way of reduction of leakage from beneath of earth dams is using of one contact clay layer with very low permeability and intermediate to high plastisity and connectig it to core of dam. Since, most of fine-grained soil in environtment of dam have low plastisity and preparing it from another place is not economic, use of bentonite in order to improvement of engineering characteristic of borrowed clay is suitable way.
In this search effect of bentonite on geotechnical properties of fine-grained soils with low plastisity are evaluated. Results of this research show that hydraulic conductivity, consolidation coefficient, dry density, colifornia bearing ratio (CBR),.....are decreased with increase in bentonite content but optimum moisture , Aterberg limits , cohession and so on are increased with bentonite addition. Finally, with analysis of obtained result, optimum percent of bentonite is offered in order to improve of engineering properties of used clay in contact region.
T Nasrabadi,
Volume 9, Issue 2 (9-2015)
Abstract

In contrast with Mobility Factor (MF) and Risk Assessment Code (RAC) indices, IR attributes a risk share to metal species bound to reducible and oxidizable phases which are totally neglected in both of the two above-mentioned indices. In other words, besides the absolutely mobile fractions, the potentially mobile ones are also regarded in risk evaluation process elaborated by IR. The different structure of the newly-developed index may prevent risk level underestimation especially in case where a remarkable percent of bulk concentration is accumulated within reducible and oxidizable phases. The independency of the index value to the bulk concentration makes it possible to discuss the potential risk in different levels of bulk concentration. Furthermore, the index capability in indication of risky pollution, regardless of the pollution source type, may prevent the probable misleading caused by distinct separation of bulk concentration into geopogenic and anthropogenic portion
Sahasan Naeini, N Gholampoor , Sa Najmosadatyyazdy,
Volume 9, Issue 2 (9-2015)
Abstract

This paper aims to present an experimental and numerical study on the effect of wetting-drying cycles and plasticity index on the California Bearing Ratio (CBR) of lime stabilized clayey soils. The numerical analysis was carried out based on finite element method for comparison between results of experimental and numerical studies. Three clays with different plasticity indices were mixed with various amounts of hydrated lime and compacted at optimum water content. The CBR tests were conducted to the soils and admixtures after specified curing time and various numbers of wetting-drying cycles. The experimental results indicate that addition of lime content up to 4% causes significant increase in the CBR values. Based on the obtained results the CBR decreases during the wetting phase and increases during the drying phase of each cycle. After 3 cycles the CBR values of lime stabilized clayey soils are increased. Also, for stabilized clays by increasing the plasticity index, the CBR values resulted by increase of lime content are decreased. The comparison between numerical and experimental analyses indicates a good agreement between results.
H. Taherkhani, M. Javanmard,
Volume 9, Issue 4 (3-2016)
Abstract

One of the major problems associated with the clayey soils is the swelling potential due to moisture absorption, which results in applying high pressure on the superstructures, and may cause failure or large deformation of the structures. Among the solutions to mitigate the swelling problem of clayey soils is their stabilization using additives. This study aims to compare the effects of three types of additives on the reduction of swelling potential of two types of clayey soils, with two different plasticity indexes. The additives used in this research include two traditional additives namely, cement and lime, and one type of nontraditional stabilizer namely, CBR PLUS nano polymer. These additives were added to the soils in different contents, and the Atterburg limits, and the swelling of the soils were measured at different times after addition of the additives. The results show that the CBR PLUS is more effective in reducing the swelling potential of the soil with high plasticity index, by which, the swelling was reduced by 1500%, while the addition of  lime and cement reduced the swelling about 1000%. For the soil with low plasticity index, the cement is found to be more effective than the lime and CBR PLUS in reducing the swelling potential. The addition of 7% of cement resulted in 1400% of reduction in swelling, against 600% reduction for the addition of the same content of lime. In addition, it is found that the CBR PLUS and cement are, respectively, more effective in reducing the plasticity index of the soil with high and low plasticity index
Mh Ghobadi, M Kapelehe ,
Volume 10, Issue 4 (5-2017)
Abstract

Durability is a significant parameter in engineering geology and it shows the extent of the degradability of rocks as the result of mechanical and chemical breakdowns. This phenomenon is closely linked to the composition, porosity and texture of rocks. To understand the relationship between the chemical composition of rocks and their durability the mineralogical properties of the rocks along with durability tests under both acidic and alkaline pH environments were determined. Five samples of limestone and three samples of marl were analyzed. The results revealed that rocks containing high levels of CaCo3 were affected in the acidic conditions while rocks containing high levels of SiO2 were not affected by variance in the pH of the environment. These second groups of rocks were more dependent on the texture of their constituent minerals.
M Ataei, Sh. Hosseini, S.h Hoseinie,
Volume 11, Issue 1 (8-2017)
Abstract

./files/site1/files/4Extended_Abstract.pdfExtended Abstract
(Paper pages 73-90)
Introduction
Up to now, various indexes and methods have been presented for evaluating the abrasivity of rocks. In total, these methods can be divided to two main groups; the methods based on nature of rocks, methods based on heuristic tools. Schimazek F-abrasivity index is one of the most powerful and applicable indexes for evaluating the rock abrasiveness. This index uses the grain size, Brazilian tensile strength and equivalent quartz content for abrasivity analysis. Since the values of these parameters are equal in Schimazek index, therefore, in some cases this index doesn't have suitable ability to distinguish and classify the rock abrasiveness. This paper tries to modify the Schimazek index considering the weights of its applied parameters.
Material and Methods
In this research, Fuzzy Delphi Analytical Hierarchy Process (FDAHP) has been used to calculate the weight of dominant parameters in rock abrasivity. For this purpose several questioners have been distributed and the expert opinions were collected. The results showed that the quartz content, grain size and tensile strength have the weight of 0.4, 0.31 and 0.29 respectively and new Schimazek F-abrasivity index is as presented in equation (1).
    
In the next stage, in order to facilitate the application of new index, a new classification system was developed. This classification and related weighing graphs (Figure 1) help to change the discontinuous classification to continuous one.
Results and discussions
In order to verify the application of the new developed index, ten ornamental stones have been studied and the old and modified Schimazek indexes were calculated for all of them. Then, the cutting rate (sawing rate) of each stone was recorded in laboratory and the mathematical relationships between new and old indexes have been achieved. The results show that the new Schimazek abrasivity index has higher ability to predict the cutting rate than old one (Figure 2). 

 
Figure1. Continuous weighting for parameters of Schimazek F-abrasivity index


Figure2. Regression of old and new Schimazek F-abrasivity index with cutting rate of granite ornamental stones
Conclusion
Generally it could be concluded that, the main weakness of Schimazek F-abrasivity index which is the equality of parameters’ importance, has been removed by idea developed and confirmed in this study. The different weights which allocated to grain size, Brazilian tensile strength and equivalent quartz content in study, improves the Schimazek index applicability in rock engineering applications specially rock cutting and drilling. Therefore, it is recommended to use new method instead of old one in future applications.
 




 
Ali Massumi, Maryam Rahmati Selkisari,
Volume 11, Issue 3 (1-2018)
Abstract

In recent decades many researchers have studied on the damage assessment of structures after a seismic event. To assess the damage of structures under an earthquake, it is so important to study the correlations between earthquake parameters and damages of the structures. A lot of seismic parameters have been defined by researchers to characterize an earthquake. Spectral parameters of an earthquake convey a variety of information about ground motion, so they can properly characterize an earthquake. Also a lot of damage indices were proposed by researchers to quantify the damage of the structures or to rank their vulnerability relative to each other. Park-Ang index is one of the best indices to describe the damage of a structure. In this paper, the correlations between spectral parameters of earthquakes and Park-Ang indices are studied. Three RC frames with different height are analyzed under far-fault earthquake records by nonlinear dynamic analyses. The correlations between spectral parameters and Park-Ang indices of the frames are calculated. The results show that in all the frames most of spectral parameters have strong correlations with damage intensity. In order to estimate the damage potential of an earthquake, some spectral parameters which have high correlations with damage intensity can be proper indices. Housner intensity, acceleration spectrum intensity and velocity spectrum intensity are shown to have strong correlations with damage intensity. In this paper, a new spectral parameter which has high correlation with damage intensity is achieved. 
Sm Fatemiaghda, H Shahnazari, H Karami, M Talkhablou,
Volume 11, Issue 4 (5-2018)
Abstract

Carbonate soils are different from silicate soils respect to their origination and engineering behavior. Particles of these soils are mainly residual or debris of sea animals or plants with large amount of calcium carbonate. They also may be chemical sedimentation of calcium carbonate over other soil particles in specific region of seas and oceans. The most important characteristic of these soils is the crushability of their aggregates under loading which is mainly due their shape and also small voids inside of them.  Crushability and subsequent volume changes in carbonate soils have caused many engineering problems in some geotechnical structures such as ...../files/site1/files/0Extended_Abstract5.pdf
Aref Alipour, Mojtaba Mokhtarian,
Volume 13, Issue 4 (12-2019)
Abstract

Introduction
The main objective of this contribution is to focus on the portion of the comminution process which deals with the prediction of the energy consumption due to the comminution portion of the milling processes.
The comminution energy in mineral processing and cement industry is usually determined by empirical Bond Work Index (BWI), regardless of the mechanical properties of a rock. The BWI is a measure of ore resistance against grinding and is determined by using the Bond grindability test. Determining the BWI value is quite complicated and time consuming. Its value constitutes ore characteristic and is used for industrial commination plants designing and optimization. The BWI is defined as the calculated specific energy (kW h/t) applied in reducing material of infinite particle size to 80% passing 100 µm. The higher the value for BWI, the more energy is required to grind a material in a ball mill. The energy consumed in the process of comminution depends on both the mechanism of comminution and the mechanical properties of the materials being ground. It is interesting to study the effect of the essential ones of these properties on the energy efficiency of grinding process.
Material and methods
Several attempts have been made to obtain and optimize the comminution energy. An efficient Response Surface Method, (RSM)-based method for the BWI approximate value determination, which is based on physico-mechanical tests, is presented in this paper.
BWI and some physico-mechanical tests on 8 typical rock samples and its correlation are studied; it would be beneficial to examine this relation based on physical concept. The database including Uniaxial Compressive Strength (UCS), Abrasion (AT), Hardness (HT) and Modulus of Elasticity (ME) are assembled by collecting data from Haffez experiments.
Results and discussion
The determination of the BWI from RSM- based multivariate model is almost matched with measured Bond’s work index. As a result of analysis the best equation obtained from RSM-based model is formulized in Equation 1:
                                      (1)
Standard statistical evaluation criteria are used to evaluate the performances of predictive models.
Conclusion
The performance of the estimator models can be controlled by R2, VAF, RMSE, MAPE, VARE and MEDAE. The RSM- based model with higher VAF as well as lower RMSE, MAPE, VARE, MEDAE shows better performance in comparison to the Haffez single-variable models. AT and ME have the greatest effect on the value of BWI; and also HT has the least impact../files/site1/files/134/6.pdf
Alireza Rastikerdar,
Volume 14, Issue 2 (8-2020)
Abstract

Introduction
Solid waste is one of the unavoidable products of every society that necessitates the establishment of municipal solid waste management system. Because of variability in quantity and composition of municipal solid wastes, several management scenarios are considered. Assessing the environmental impacts of the life cycle of these scenarios will have a significant role in reducing and resolving urban service management problems. The aim of this study was to compare different scenarios of municipal solid waste management in Sirjan city using life cycle assessment (LCA) approach. LCA methodology is used to evaluate the environmental performance of the waste management of Sirjan for different scenarios, according to the ISO standards 14040 series 2006.
Material and methods
After identifying the quantitative and qualitative characteristics of the produced wastes within the scope of the study, the quadratic steps of the LCA method are followed in relation to each of the scenarios. The stages of life cycle assessment in the present research are as follows:
 1. Determining goals and scope: Our goal is to compare environmental impacts of scenarios that include different methods of disposal. The boundaries of the study start from the collection of municipal solid wastes from the transfer station and ends with the final disposal of waste (Figure 1)

Figure 1. System boundary
Four scenarios have been investigated and evaluated in the environmental field (Table 1).
Table 1. Disposal solid waste scenarios
Scenario Compost (%) Recycle (%) Incineration (%) Landfill (%)
1
2
3
4
0
68.4
17.1
0
0
19.2
15
19.2
0
0
55.9
69.8
100
12.4
12
11
2. Collecting data and life cycle inventory (LCI): Various tools have been developed for LCI, one of which is the IWM-2 model. The IWM-2 model is one of the lifecycle assessment models that can be used to define different scenarios and then to compare the environmental impacts of each scenario. At this stage, the data from physical analysis, the amount of waste produced, the stages of separation at source, collection, transportation and final disposal, were collected and analyzed and the amount of contamination caused by each of the scenarios and energy consumption were determined.
3. Life cycle impacts assessment (LCIA): Assessing the impacts of the life cycle is a step of life cycle assessment, aimed at understanding and assessing the magnitude and significance of the potential environmental impacts of a product or service. At this step, the various information and data obtained at the LCI stage are reduced to less indicators and impact categories in order to facilitate the interpretation of this information and provide clearer outcomes to decision makers and managers. In this step, input data are allocated to the five impact categories of energy consumption, greenhouse gases, acid gases, photochemical gases and toxic emissions.
4. Interpretation of results: At this stage, the results of the LCI and LCIA will be evaluated so that the stages or points which have the greatest and least harmful impacts on the environment in the production and consumption of the product have been determined. Finally, conclusions and solutions are explained.
Results and discussion
Results of the model were allocated to five categories consisting of energy consumption, greenhouse gases, acid gases, photochemical gases and toxic emissions. In every category, the ecological index as a quantitative measure to compare scenarios was calculated.
Conclusion
In this study, the life cycle assessment approach was used as a decision tool for choosing the appropriate waste disposal scenario in Sirjan city. The second scenario (68.4% compost, 19.2% recycling, 12.4% landfill) was selected as the preferred option for municipal waste disposal in Sirjan city. Also the results of this study show that in an integrated municipal waste management system, increasing the rate of separation and recycling will significantly reduce the release of environmental pollutants../files/site1/files/142/5.pdf
 
Majid Dashti Barmaki, Zahra Yazdani Barmaki, Massoud Morsali,
Volume 17, Issue 4 (12-2023)
Abstract

In order to design and optimize the quality monitoring network in areas with several sub-basins, it is necessary to know the criteria that affect them, so that in each sub-basin the presence or absence of a monitoring station and the required parameters can be determined. In this respect, the use of the surface water pollution index, namely WRASTIC, can be effective. The WRASTIC model is a practical and advanced method for assessing the risk and potential of pollution in sub-basins. Due to its role in the drinking water supply of the city of Bandar Abbas, monitoring the quality of the Shamil-Takht study area is very beneficial. Therefore, to assess the risk of pollution in this plain, the basin was divided into 16 sub-basins using Global Mapper software. The WRASTIC index was presented as different layers of information, and its value was calculated for each sub-basin by rating by expert judgement method, weighting by hierarchical analysis method, and merging layers using weighted overlap. The results showed that three sub-basins have high risk and three sub-basins have low risk. Then, according to the condition of the streams in each sub-basin, the pollution index and its importance, the number of quality monitoring stations and the necessary parameters in this area were determined. Accordingly, five stations were added to the existing ten hydrometric stations at different locations. In the final 15 stations, the measurement of general parameters and major ions was included in the proposed agenda. The measurement of parameters such as phosphate/phosphorus and nitrate/nitrite was also included in six sub-basins, and heavy metals in three sub-basins.

Seyyed Mahmoud Fatemi Aghda, Seyyed Sara Mousavi Herati, Mehdi Talkhablo, Amir Maziar Raeis Ghasemi,
Volume 18, Issue 2 (9-2024)
Abstract

The alkali-silica reaction of aggregates is one of the most significant factors in the destruction of concrete structures worldwide. This is due to chemical reactions between alkaline fluids in concrete voids and active silica minerals present in some aggregates. Considering that many physical, chemical and mechanical properties of concrete are related to aggregates, the role of aggregates in concrete is crucial. This research aims to investigate the compatibility of aggregate petrographic studies and accelerated prismatic mortar testing in predicting the reactivity of aggregates and determining the intensity of aggregate reactivity using the DRI index (a semi-quantitative complementary petrographic analysis). The study was carried out on laboratory samples of aggregates from mines around Tehran, using the ASTM C295, ASTM C1260 and ASTM C856-4 tests. The results showed that pyroclastic aggregates, which include sandy tuff, crystalline tuff (dacitic andesite) and glassy tuff, have the potential to cause an alkali-silica reaction due to their glassy background and microcrystalline silica. During the alkaline reaction tests of the aggregates, evidence of gel was found in cracks, holes and cement paste. In addition, the DRI index showed that the fine aggregates of both study areas were in the "slightly damaged" category and the coarse aggregates were in the "severely damaged" category.

Mr. Farhad Mollaei, Dr. Reza Mohebian, Dr. Ali Moradzadeh,
Volume 18, Issue 3 (12-2024)
Abstract

The brittlenessindex is one of the most important parameters in geomechanical analysis and modeling. Many methods have been proposed to estimate the brittleness index. One of the recently used methods is the  intelligent method. In this paper, firstly the aim is to introduce a new algorithm using deep learning algorithms to predict the brittleness index in one of the wells of the hydrocarbon field in southwest Iran. In this article, first, the effective features for the input of the algorithms were determined using Pearson's correlation coefficient, and then using (recurrent neural network + multi-layer perceptron neural network) (LSTM + MLP) and (convolutional neural network + recurrent neural network) (CNN+ LSTM) brittleness index was estimated and the mean error value (MSE) and coefficient of determination (R2) were calculated for the training and test data. For both training and test data, both algorithms have a coefficient of determination close to 1 and a very low error. Also, in order to ensure the results of the algorithms, a part of the data was set aside as blind data, and the error and coefficient of determination were calculated for this data, and the error was MSE CNN+LSTM =26.0425,  MSE LSTM+MLP =32.0751  and the coefficient of determination was R2 CNN+LSTM  =0.8064,  R2 LSTM+MLP  =0.7615 . The results show the effectiveness of the introduced deep learning algorithms as a new method in predicting the brittleness index, and comparing the two algorithms presented, the CNN+LSTM algorithm has higher accuracy and less error.

Shaghayegh Samiee-Rad, Giti Forghani, Hadi Jafari,
Volume 18, Issue 3 (12-2024)
Abstract

The Garmabdasht River as the first tributary of the Qarasu River, flows through the city of Gorgan and eventually  flows into Gorgan Bay. In order to study the hydrochemistry and to assess the water quality, 10 water samples were collected in June 2022. Physicochemical properties (pH, electrical conductivity, total dissolved solids), major ion concentrations, and microbiological  parameters (dissolved oxygen content, biological oxygen demand, chemical oxygen demand, and coliform bacteria) were measured by standard methods. The obtained results show that the pH of the water samples varies between 7.5 and 8.5 and the electrical conductivity of water samples varied between 376 and 665 µs/cm.  In terms of hardness, water samples were classified as hard and very hard. The concentrations of the major ions, phosphate and nitrate were within the permissible range for drinking usage. By calculating the ionic ratios and drawing the Durov diagram, it was found that the water chemistry was mainly controlled by the dissolution process. The position of the samples on the Piper diagram shows that the type and facies of the river water samples were calcium bicarbonate, magnesium bicarbonate and calcium sulphate. According to the Wilcox diagram, the Garmabdasht river water was suitable for irrigation. The residual sodium carbonate and sodium percentage values confirm this conclusion; however, based on the magnesium hazard index, the studied samples were not suitable for irrigation. The values of dissolved oxygen in all samples were within the permissible limit. The amounts of biological oxygen demand and chemical oxygen demand in some stations exceeded the permissible limit due to the influx of livestock and agricultural effluents. The obtained results show that the samples were microbially polluted, which may induce the health problem in the local population. The values of NSFWQI also shows that, except for the upstream samples of S1 and S2, the quality of the studied samples for drinking is in the bad to medium class.

Dr Eisa Hajiradkouchak, Dr Behzad Rahnama, Dr Hasan Nasrollahzadeh, Mr Ali Shahbazi, Mr Reza Raeiji, Mr Kazem Babaei,
Volume 18, Issue 3 (12-2024)
Abstract

Many researchers believe that providing safe water, sanitary disposal and optimal management are the three axes of health, and in all these cases, while paying attention to the process of doing work, continuous control should also be done. This study was designed and implemented with the aim of seasonally investigating the physicochemical and microbial water quality of Qarasu River in Golestan province using the IRWQIsc index. 6 sampling stations were identified for Qarasu River and sampling was done once every month in four seasons of 1400. The measured parameters include pH, BOD, COD, dissolved oxygen (DO), electrical conductivity (EC), ammonium (NH4), nitrate (NO3), phosphate (PO4), total hardness (TH), turbidity and total suspended solids. It was a stool form. According to the measured parameters, Iran's surface water quality index IRWQISC was calculated. The results of the study based on the index showed that the quality of this index for all stations in all seasons was between 70.5 and 14.7 and according to the IRWQISC index, it was in five good categories (70-1.85), relatively good. (55-1/70), relatively bad (30-44-9), bad (15-29-9) and very bad (less than 15). The influencing parameters were total suspended solids, turbidity, nitrate, temperature and fecal coliform. It can be concluded that the amount of 70.5 with good quality is related to (Tuskestan village) in winter and the amount of 7.14 with very bad quality is related to (Pol Qara Tepe) in summer that the quality of the river water in The Gorgan to Aqqla road bridge station (Qorban Abad) is in bad condition in all seasons due to the entry of urban and industrial pollutants into this station, and Tuskestan village station has good and relatively good quality in most seasons because Tuskestan is in It is located in high altitudeand the entrance of clean running water  into thisarea is more and it is far from industrial and urban pollutants.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb