Miss Masoumeh Nikbakht, Prof Mohammad Nakhaei, Prof Ata Shakeri, Dr Vahab Amiri,
Volume 16, Issue 4 (12-2022)
In this study, the hydrogeochemical and qualitative status of groundwater resources of the Zarabad coastal aquifer in southeast Iran has been investigated. The decreasing order of cations and anions is Na+>Ca2+>Mg2+>K+ and Cl->SO42->HCO3-, respectively. The two most water type are Na-Cl (78%) and Ca-Mg-Cl (22%). The water type, chlorine-alkalinity index, ion ratios, and position of the samples on the Gibbs diagram show that cation exchange (direct and reverse), weathering of silicates and evaporites, and seawater intrusion are the main controlling processes of water chemistry. The ionic ratios of SO42-/Cl-, B/Cl-, and Na+/Cl- indicate that saltwater infiltration increases as the distance from the Rabach River increases, particularly in the northwest and southeast regions. This can lead to a decrease in the quality of water resources. Moreover, the water quality for agricultural use is assessed based on some indices, including electrical conductivity (EC), sodium percentage (Na%), sodium absorption ratio (SAR), residual sodium carbonate (RSC), magnesium absorption ratio (MAR), permeability index (PI), Kelly’s ratio (KR), and USSL and Wilcox diagrams. The results showed that about 60% of the samples had unsuitable quality for irrigation. These samples were located in the northwestern and southeastern parts of the plain. About 40% of the samples have suitable quality for irrigation and are located in the vicinity of the Rabach River.