Search published articles


Showing 2 results for Protection Zone

Amin Ahmadi, Manouchehr Chitsazan , Seyed Yahya Mirzaee , Arash Nadri ,
Volume 16, Issue 2 (9-2022)
Abstract

In order to protect water wells, it is necessary to analyze the zones of influence, capture, recharge and discharge zones. Despite much research, this issue still needs further discussion. The purpose of this research is to analyze the capture and discharge zones of water wells in alluvial unconfined aquifers. For this purpose, a hypothetical aquifer was simulated using the Modflow and Modpath models. The accuracy of the numerical model outputs was confirmed by comparison with the analytical calculations, and then the effect of the independent parameters of the well and the aquifer was investigated. This research showed that, contrary to popular belief, changes in hydraulic conductivity, specific yield, bedrock dip, initial thickness, porosity, and heterogeneity do not cause changes in the surface extent of the well's capture zone in the unconfined aquifer.This research has shown that changes in surface recharge, discharge and well location cause many changes in the surface extent of the well capture zone in unconfined alluvial aquifers. Investigation of the effect of pumping time in a single well system showed that the size of the capture zone initially increases, but after a short period, of time, despite the continued expansion of the drawdown cone, its position stabilises. It was found that the change in all the above parameters causes a change in the size of the well's discharge zone. The stability of the above-mentioned areas is very important for the determination of zones for the protection of the quantity and quality of water wells! It has been found that the relative stability of the water level in the aquifer at an appropriate level is necessary, and this requires the management of the aquifer and the allocation of a limited percentage of the aquifer recharge to discharge through wells.
 

Amin Ahmadi, Gholamreza Mirzavand, Maryam Zebarjad,
Volume 17, Issue 3 (12-2023)
Abstract

The zone of influence of the well is the area where the activity of the well changes the water level. The zone of influence is important in determining the protection zones; however, in this regard, reliable relationships have not yet been presented and their lack of relationship has not been confirmed; and this is due to the lack of accurate knowledge of the zone of influence in some aquifers. This study was carried out using the MODFLOW model to know the effect of aquifer physical parameters on the drawdown cone in an unconfined alluvial aquifer with a sloping water surface; and since no such research has been reported so far, the results are innovative. The results showed that although it is possible to ignore the effect of a well in parts of the aquifer due to measurement and presentation limitations, in practice the influence zone of each well will extend to the outer physical boundaries. It was found that two types of real and theoretical drawdown cones can be discussed in the influence zone and each should be analyzed separately. It was found that parameters such as hydraulic conductivity, saturation thickness, transmissivity, horizontal anisotropy, bed slope, and amount of recharge in sloping unconfined aquifers have a dual effect on the drawdown cone, and if their high values decrease the drawdown in short distances, they increase the drawdown in long distances. It was found that normal heterogeneity does not change much on the drawdown cone, and the reason is the opposite effects of hydraulic conductivity and specific yield on the drawdown value. It was found that hydraulic conductivity, horizontal anisotropy and specific yield have a strong effect, but vertical anisotropy and heterogeneity have a negligible effect on the drawdown cone.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb