Search published articles


Showing 5 results for Resistance

Majid Mahdi, Hooshang Katebi,
Volume 11, Issue 4 (5-2018)
Abstract

 Introduction
Recently, several studies on buried pipelines have been conducted to determine their uplift behavior as a function of burial depth, type of soil, and degree of compaction, using mathematical, numerical and experimental modeling.
One of the geosynthetics applications is the construction of a reinforced soil foundation to increase the bearing capacity of shallow spread footings. Recently, a new reinforcement element to improve the bearing capacity of soils has been introduced and numerically studied by Hatef et al.  The main idea behind the new system is adding anchors to ordinary geogrid. This system has been named as Grid-Anchor (it is not a trade name yet). In this system, a foundation that is supported by the soil reinforced with Grid-Anchor is used; the anchors are made from 10×10×10 mm cubic elements. The obtained results indicate that the Grid-Anchor system of reinforcing can increase the bearing capacity 2.74 times greater than that for ordinary geogrid and 4.43 times greater than for non-reinforced sand...../files/site1/files/0Extended_Abstract6.pdf
 


Majid Jazebi, Mohammad Mehdi Ahmadi,
Volume 12, Issue 5 (12-2018)
Abstract

This study numerically investigates the bearing capacity of drilled shafts (bored piles) in clay using FLAC2D. The results obtained in this study are compared with centrifuge test results. The results of the empirical relationships available in the literature are compared with the results of the present numerical study. A series of analyses is also conducted to assess the effects of various soil and pile parameters on the magnitude of tip and side resistance of bored piles embedded in clay. These parameters include the soil elastic modulus, pile length and diameter, undrained shear strength, unit weight, and Poisson’s ratio of soil. Furthermore, the coupling effect of soil undrained shear strength and elastic modulus of soil on tip resistance are investigated. The results show that the lower value of soil elastic modulus results to lower effect of soil undrained shear strength. The effect of soil undrained shear strength on tip resistance is approximately constant (about 83% for a change of soil undrained shear strength between 25 to 200 kPa) for the range of elastic modulus between 20 and 180 MPa. Also, a new equation is proposed to estimate the bearing capacity factor of N*c.
 
Vahid Daneshjoo, Reza Farokhzad,
Volume 13, Issue 1 (8-2019)
Abstract

Introduction
Nanostructured materials have gained increasing attention of industry and the academia in recent decades, due to their prominent behaviors. In this regard, the building industry is considered to be the major consumer of nanostructured materials in terms of its needs, including strength, resistance, durability and high performance. Studies on nanoscale behavior of cement and concrete to develop new building materials and their applications are of high importance. A typical method for the development of high performance concrete (HPC) often contains various parameters, including the mix of conventional concrete with different types of additives. Nano-Calcium carbonate (Nano-Precipitated Calcium Carbonate) is a nano-sized filler which is used in this research. The results indicate that the higher the optimal content of nano-precipitated calcium carbonate powder, the higher the initial heat of the roller-compacted concrete; also, the resistance of the samples significantly increases over time. However, the level of permeability of roller-compacted concrete decreases by optimal increase of nano-calcium carbonate powder due to its fine grains, filling properties, and high specific level. The results of this study show that the adequate use of this material improves some properties of roller-compacted concrete.
Material and methods
In this study, the content of Nano-calcium carbonate used was selected at 0, 1, 2, 3 and 4 percent replacing a volume of cement consumed in concrete. Type II Portland cement, crushed fluvial sand, and crushed coarse aggregates with a maximum size of 19 mm were used. The aggregates’ grading range in the mix has been selected according to the ACI325-10R. The chemical formula of Nano-calcium carbonate powder is CaCo3 and the average particle size is between 15-40 nm
According to the roller-compacted concrete specifications, 5 mix designs have been used with different proportions of stone materials in preparing of concrete. The samples were made on a vibrating table and in the cylindrical molds of 15 × 30 cm according to ASTM C1176 standard.
By increasing the cement grade, the slope of the Vebe curve increases, which means an increase in speed and reduction in efficiency over time in higher grades. Increasing the cement grade from 275 to 300 kg/m3 leads to increased Vebe time. In other words, it can be said that the efficiency is reduced at a lower rate in lower grades of new roller-compacted concrete mix. The Vebe time of the roller-compacted concrete pavement should be between 30-40 s to achieve optimal efficiency. According to the results of Vebe time, the efficiency of the roller-compacted concrete with the grade of 300 kg/m3 has a better functionality than other mixtures and lasted more than others in the 30 to 40 second range. Accordingly, concrete with a grade of 300 kg/m3, is the compressive strength according to this design.
Determining the compressive strength of cylindrical concrete samples of different ages is done according to the ASTM C39/C39M standard. For permeability test, the BS EN 12390-8: 2009 was used in which the sample should be put under pressure of  (0.5±)5 for 72 hours immediately after molding. Determining the tensile strength of concrete cylindrical samples at different ages is done according to the ASTM C496 standard. The peak is obtained using the XRD analysis of the crystallite size by determining the width of the peaks. In interpreting the XRD data, a list of peak resolution and their intensities is observed. To determine the elemental composition of materials, a non-destructive analytical technique is used by X-ray which is so-called XRF (X-ray fluorescence). A scanning electron microscope is a powerful magnification tool and is used to distinguish elements.
Results and discussion
The results indicate that the increased Vebe time occurs by an increase in the percentage of nano-calcium carbonate. In terms of the compressive strength of cylindrical roller-compacted concrete samples, 2% of nano-calcium carbonate at the ages of 7, 28, and 90 days has been effective in increasing compressive strength in higher ages. Such that, at the ages of 28 and 90 days, it is increased by 12% and 15 % compared to the control sample, respectively. The nano content increases over 15% causes decreased compressive strength and thus had negative effects on the rheological properties of the roller-compacted concrete. In terms of tensile strength of the cylindrical roller-compacted concrete samples, 2% of nano-calcium carbonate at the ages of 7, 28 and 90 days has been effective in increasing compressive strength in higher ages, such that at the ages of 7, 28 and 90 days, it has been increased by 25%, 30% and 30 % compared to the control sample, respectively. However, it can also be concluded that the excessive increase has partly reduced the tensile strength.
The variation of the permeability coefficient is a function of concrete porosity and water penetration in the roller-compacted concrete. Also, there are significant changes in the concrete permeability coefficient by adding different percentages of nano-calcium carbonate to concrete.
Adding nano-calcium carbonate up to 2% of cement weight to the roller-compacted concrete reduces the permeability coefficient of the roller-compacted concrete. One of the reasons for this phenomenon is capillary interstice filling in the roller-compacted concrete. Moreover, the nano-calcium carbonate increase of over 2% of cement weight raises the permeability of the roller-compacted concrete.
Adding 4% of nano-calcium carbonate to the roller-compacted concrete pattern increases the intensity of the peaks in the XRD test. Given that the average crystallite size is obtained from full width at half height of the peaks, by increasing the peaks’ intensity and their width at half height of the peaks, we get smaller crystallite size. Also, by adding 4% of nano-calcium carbonate, the widths of the peaks are increased, which means smaller crystals and increased crystallite inner tension.
Conclusion
Nano-calcium carbonate, due to its special features, including a high specific surface area, has a good performance in improving the mechanical properties and durability of the roller-compacted concrete, if it is used at a certain and optimal amount. The roller-compacted concrete with the grade of 300 kg / m3 has better functionality than other mixtures, and lasted more in the 30 to 40 second range.
The mix design containing 2% of nano-calcium carbonate replacing cement, has the highest compressive strength at the age of 7 days and shows 4% increase in resistance compared to a control sample at the age of 7 days. The mix design containing 2% nano-calcium carbonate has the highest compressive strength at the age of 28 days and shows 12% increase in resistance compared to a control sample at this age and improved the compressive strength. The mix design containing 2% nano-calcium carbonate has the highest compressive strength at the age of 90 days and shows 15% increase in resistance compared to a control sample at this age. The mix design including 3% of nano-calcium carbonate replacing cement, has the highest tensile strength at the age of 7 days, and shows 25% increase in resistance compared to a control sample at the same age. The mix design containing 2% of nano-calcium carbonate replacing cement, has the highest tensile strength at the age of 28 days and shows 30% increase in resistance compared to a control sample at the same age. The mix design containing 2% of nano-calcium carbonate replacing cement, has the highest tensile strength at the age of 90 days and shows 30% increase in resistance compared to a control sample at the same age. ./files/site1/files/131/3Extended_Abstract.pdf
 
Kazem Bahrami1, Seyed Mahmoud Fatemi Aghda, Ali Noorzad, Mehdi Talkhablou,
Volume 13, Issue 2 (8-2019)
Abstract

Aggregates are one of the high demand building materials in construction of structures and their characteristics have important effects on durability and permanence of projects. Abrasion resistance is one of the important features of aggregates that their utilization in concrete and asphalt are affected by texture and lithology of them. As rock consisted of harder minerals have higher abrasion resistance like igneous rocks, due to more siliceous minerals. More varieties in mineralogy compound usually lead to increase in aggregate abrasion. Aggregates that are contained of different minerals usually have less abrasion resistance. Porosity usually decreases the resistance abrasion. In addition to lithological properties, the environment where aggregates are deposited is important in determining resistance-related parameters of aggregates.
Rivers, alluvial fans, and taluses are the main environments where aggregates are deposited. Geological processes, such as weathering and particle movement may cause changes in natural aggregates, hence affecting their abrasion and impact resistance. Rock weathering can results in increasing porosity, producing minerals that are weaker in comparison to their original rock.
In the process of particles transport by stream water, weak parts of aggregates will be omitted. The present study is focused on the relationship between geology medium and the weight loss of aggregate in Los Angeles test. 
Methodology
Considering that lithology features in aggregates resistance against abrasion have an important role, in order to examine the effect of various geology environments in abrasion resistance of aggregates, the medium should be chosen having similar lithology. Therefore, the north of Damavand and the south of Daneh Khoshk anticline (north of Dire plain) were firstly chosen by using geology map, satellites images and field study. Damavand zone consists of trachyte and trachy-andesite volcanic rocks. These rocks cover the whole area around the Damavand peak. Also, Daneh Khoshk anticline is covered by thick Asmari formation. The selected environment are in the length of each other. Such that taluses feed alluvial fan and alluvial fans feed rivers. Samples were collected from different area of southern part of anticline. 10 river area, 12 alluvial fan and 6 taluses in the south-west area of Daneh Khoshk anticline (north of Dire plain) were chosen. Los Angeles test has been done according to standard A method ASTM D2216-10, 1990 on samples and the results were analyzed by analogous analyzer.
Results and discussion
Results show that porosity and micro-crack percentage increase, respectively in accumulated aggregate in river, alluvial fans and taluses areas. Also, porosity and micro-crack in various alluvial fans is different and is influenced by the area and length of main channel of alluvial fans’ catchment. The porosity decreases by the increase in the length of channel and area of alluvial fans’ catchment.
The percentages of aggregate weight loss in talus, alluvial fan and river areas decreases, respectively. Based on the obtained results, the lowest rates of weight loss belong to river environments (23.7 % in Daneh Khoshk and 42% in Damavand) whereas the highest rates of weight loss belong to taluses (49.3% in Daneh Khoshk and 48% in Damavand). The alluvial fans have an average state. Another noticeable point is the high weight loss in Los Angeles test in Damavand aggregate. Due to having harder mineral, igneous aggregate have more abrasion resistance, but this research illustrates that the weight loss resulting from Los Angeles test in these aggregates is high. This is because of virtues texture that weakness against the impact as well as their high porosity.
Conclusion
The result of this research indicates that the volume of aggregate weight loss in Los Angeles test is related to aggregate accumulation environment. The extent of aggregate abrasion resistance is lowest in talus medium and increases in alluvial fan and river environment, respectively. The difference in aggregate abrasion resistance in various areas result from geology process differences that applies to aggregates in various environment. The extent of caring particles in talus environment is very low and the type of movement is mass or sliding type in these media, micro-crack and weak parts remains within aggregates. The surface of micro crack is weak such that breaks easily in Los Angeles test due to the pressure results from the impact of aggregate, as well as the impact of steel ball on aggregate leading to aggregate breakages. Aggregates move more distances in alluvial fan and river. Aggregate strike together in riverbed and alluvial fan yielding to aggregates breakages from micro-cracks. As the movement distance increases, aggregates approach more to intact rock. During the particles move, the weathered and weak parts are damaged by aggregate abrasion to riverbeds and alluvial fan, and more resistant and harder aggregates remain. As the water current increases, the aggregates impact each other harder, more resistant micro-crack breakages and this change leads to decrease the weight loss in Los Angeles test.
./files/site1/files/132/1Extended_Abstracts.pdf
Dr Sayed Ali Asghari Pari,
Volume 18, Issue 1 (5-2024)
Abstract

Pile design is subject to a number of uncertainties that must be addressed to ensure the reliability and safety of the foundation. A common approach to reduce uncertainties in pile design is to calibrate the resistance factor in the Load and Resistance Factor Design (LRFD) method through reliability analysis. However, it is important to recognize that the LRFD method may not fully account for uncertainties associated with soil and pile resistances. The results of this study show that the separate consideration of base and wave resistance can lead to a more accurate and reliable design of piles. The proposed method can help engineers make more informed decisions and reduce uncertainties in pile design. In addition, the study highlights the importance of considering different factors such as the ratio of dead to live load and the ratio of base to shaft resistance when calculating the resistance factor.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb