Search published articles


Showing 2 results for Simulation.

Mahdi Beshavard, Arash Adib, Seyed Mohammad Ashrafi,
Volume 16, Issue 3 (12-2022)
Abstract

Droughts caused by precipitation deficits and increasing water consumption are intensifying worldwide, with negative economic and environmental consequences. The negative impacts can be mitigated by using optimized reservoir operation patterns and implementing rationing rules during droughts. These approaches involve meeting only a portion of total demand, allowing for water storage and accepting a small current deficit to mitigate severe future shortages. This research presents a case study to determine the operational command curves for Jareh Dam and to investigate the impact of reservoir operation under two management policies, Standard Operating Procedure (SOP) and rationing, on downstream drought indices, an aspect not previously studied. To achieve this, an optimization model coupled with a genetic algorithm was linked to a simulation model to determine the optimal values of command curves and rationing coefficients based on historical inflow data to the reservoir. The performance of the model was evaluated in the Allah River water resources system. In addition, the drought severity index (SDI), SOP performance, and rationing model performance during the base period were evaluated by calculating the objective function value or modified shortage index (MSI) and the resilience, vulnerability, and reversibility indices. The results showed that under the rationing model during the study period, the MSI value improved by 41% compared to the SOP method. In addition, the implementation of the rationing policy significantly improved the vulnerability of the system compared to the SOP method, reducing it from 64% to 26%.

Mrs Roya Masoumipour, Dr. Saeed Mahdavi,
Volume 19, Issue 1 (6-2025)
Abstract

The Chador-Malu open-pit mine is faces complex challenges regarding the long-term stability of its slopes. These are directly influenced by time, environmental changes, and stresses induced by mining activities. Considering the existing evidence of potential future instability, displacement changes along the northern to eastern pit walls were analyzed over an 18-month period. Long-term wall displacements were measured using radar. Through back-analysis and three-dimensional numerical simulations, the equivalent creep behavior of the slopes was evaluated using the Maxwell creep model. After assessing the geomechanical parameters, the impact of three scenarios  passage of time, bench widening, and pit deepening  on slope stability was investigated under three horizontal-to-vertical stress ratios of 0.5, 1, and 1.5. The analysis results indicated that a horizontal-to-vertical stress ratio of 1.5 better matched the field observations. In the first scenario, a 50% increase in time led to over a 100% increase in displacement rates, indicating a rise in instability potential over time. In the second scenario, unloading the first two benches reduces the instability potential, due to an 18% reduction in uplift while unloading up to the eighth bench increased instability potential due to the reduction of weight at the slide’s toe and an increase in the average uplift. In the third scenario, pit deepening formed another sliding zone between the tenth and seventeenth benches.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb