Search published articles


Showing 7 results for Stability

S Afshar, M Ghafori, Gr Lashkaripur, M Arian, M Musavimadah,
Volume 6, Issue 1 (11-2012)
Abstract

With respect to development of underground structures and their high construction costs in intra- and inter-municipal transportation, it is necessary to study the stability of such structures. In this research, tunnel stability of Mashhad Metro line 2 with 17 km length is studied. First, the type of sediments and geotechnical properties in Mashhad Plain are investigated. The SPT profiles were prepared using Rock Work 2006 software. The soil classification tests and XRD results show that the soils in this line are mostly clay such as Illite and Kaolinite types. Afterwards, because most of the soils in this line are characterized as fine grained, the ground settlement using PLAXIS V8 software was performed. According to the numerical modeling and the depth of tunnel, the optimum depth for tunnel was determined.
Abbas Zeighmi, ,
Volume 10, Issue 2 (11-2016)
Abstract

The Sharbyan river is located in the Sharbyan village, Sarab, East Azarbaijan province. This river alluvials are supplied from rock units belonging to Oligo-miocene and Miocene, including conglomerate, sandy lime, limestone, marl and shale. These deposits are used as raw materials of producing hot asphalt in two asphalt plants that have been built in the vicinity of this river, and the produced asphalt is used mainly in the neighbor provinces that have rather cold climate. Combined analysis of the sediments indicate high level of silica, around 60 percent, for which  the prepared asphalt  is prone to stripping phenomenon in the cold seasons. During this process, the moisture penetration in aggregates and asphalt mixtures, causes weakening bitumen-asphalt materials bounding and finally asphalt demolition.  The role of sediments and its impact on the quality of asphalt has not been studied in this area, therefore, the solutions for dealing with this phenomenon is also examined and presented. This study is based on the conventional sedimentology methods, different standards of ASTM, AASHTO and Ministry of Roads and Urban Development guidelines. In this study, the combined effects of hydrated lime (lime filler) and natural filter materials with different proportions was used to deal with the stripping phenomenon, and  the parameters of strength, softness, indirect tensile strength, asphalt quality and durability criteria, have been appraised. The results show that these parameters are improved using additives in various proportions and the produced asphalt quality and durability is better. The results illustrate, when the lime is used in its maximum ratio of 3%, stripping score is 1 and is disappeared by other parameters improvement


, ,
Volume 10, Issue 3 (2-2017)
Abstract

Komrud village of located on the slope is particularly susceptible to landslides. The slope stability analysis is of special importance because of landslides or slope failures can cause major damages life and financial. In studies to determine the factors and parameters affecting the slope is unstable. According to studies, one of the most important factor affecting landslides in this area is the force exerted by the acceleration of the earthquake. With this approach, the maximum possible acceleration of earthquakes in a 50-year period is estimated at the site. On the other hand, based on studies of the geological is determined profile of the slope geometry, physical and resistance parameters to the landslide susceptible. Then using the modeling software in FLAC 2D 5.00 elasto-plastic structural models, with failure criteria Mohr – Coulomb, stress-strain behavior of the soil has been examined to pseudo-dynamic method. A base position at the top of the slope is considered and displacement it horizontally to reach the maximum possible acceleration is calculated and recorded. The results of this study indicate that Horizontal displacement followed the landslide, can be occur below the maximum acceleration estimates.


Fatemeh Abtahi, Mehdi Hosseini, Akbar Shah Hosseini,
Volume 13, Issue 3 (11-2019)
Abstract

Introduction
Unsystematic execution of blasting process may result in serious damages. Blasting is a very complex process and almost all of blast designs are made based on empirical relations resulting from trial and error. In recent decades, considerable development of numerical methods has been made possible to achieve high accuracy study of blast effects on surface and subsurface structures. Among these methods are boundary element method, finite difference method and finite element method. It should be mentioned that there is currently no software which might be able to completely simulate blast process. But the UDEC software is able to simulate different aspects of this phenomenon through simplification and focusing on each aspect.  Therefore, the UDEC software was selected. In the present study, the modeling  has been performed for Ghareh Changool ramp of Zehabad Zinc and Lead Mine against blast loads.
Material and methods
Zehabad Ore deposit is located around 2 km south of  Zehabad Village of Tarom Sofla County, 56 km to northwest of Qazvin at 49˚ 25' east longitude and 36˚ 28' north latitude.
The formation surrounding the ore deposit is generally made up of pyroclastics, lavas and sedimentary rocks of Eocene age (Karaj Formation) which have been divided into 22 stratigraphic units. Lithological composition of the tuff units are often rhyolithic to dacitic and the lava units are consisted of rhyolite, dacite and andesite.
To  accomplish this study, we took rock blocks from Ghareh Changool ramp. Then, the blocks were cored in the laboratory to provide cylindrical samples for doing uniaxial compressive, triaxial, Brazilian and direct shear tests. Physical and mechanical properties of the tuff samples were determined according to ISRM standards. 
In the present study, field studies were done to calculate strength parameters and properties of the joints.  Based on these studies, three major joint sets were determined. In order to obtain the shear strength parameters of the joints, the cylindrical samples of andesitic tuff were molded by concrete and direct shear test was done on all of the joints according to ASTM D 4554.
Results and discussion
To simulate the complex conditions of blast process, we used the discrete element software of UDEC for numerical modeling considering the discontinuity of the medium. To do a dynamic analysis, first the model should come to equilibrium in the static state. The space considered to be modeled in the study was a horse-shoe-shaped ramp with 4 m base, 4 m height and 1.5 m arc radius which was located in rocky medium consisting of tuff.  The height of overburden above the roof of the ramp was about 190 m. The dimensions of the model in UDEC was 20*20 m2. The behavioral model considered for the rock blocks and discontinuities were the elastic isotropic and surface contact of the joint (elasto-plastic) associated with Coulomb sliding failure, respectively. After defining the absorbing boundary conditions, the dynamic loads were applied to the model based on the defined time period. In mines stability and blasting process, the dynamic load resulting from the blast is often applied to a model as a pulse. By application of dynamic load and considering the other mentioned variations with respect of static analysis, the dynamic response of underground space could be estimated under vibration load of blast or earthquake. To do this, the blast impact wave was applied to the left side of the model as exponential pulse with maximum pressure of 4.41 MPa and time width of 0.7 to 7 msec. The results of the numerical modeling in static analysis indicated that no block would fall (Fig. 1). After application of the blast load, the results showed that there was no falling around the ramp (Fig. 2).
Conclusion
1. In static condition, after initial equilibrium no block was fallen into the ramp, regarding the blocks’ magnification plots, as a result the ramp was stable in the static loading.
2. In dynamic loading case, considering the displacement plots  around the ramp and the low values of these displacements, as well as, magnification plot of  the blocks 40 msec after the blast it can be said that no block was fallen into the ramp. Therefore the ramp was stable in the dynamic loading case and there was no need to install support system. ./files/site1/files/133/1Extended_Abstracts.pdf
Mahnaz Firuzi, Mohammad Hossein Ghobadi, Ali Noorzad, Ehsan Dadashi3,
Volume 13, Issue 5 (12-2019)
Abstract

Slope stability could be a major concern during the construction of infrastructures. This study is focused to analyze the slope stability of Manjil landslide that was located 41+400 to 42+200 km along Qazvin-Rasht freeway, Iran. The Manjil landslide, which had 168 m long and approximately 214 m wide, was occurred due to inappropriate cutting in June 2013 and led to destructive and closure of freeway. Slope stability analysis was carried out using a finite element shear strength reduction method (FE-SRM). The PHASE2D program was utilized in order to model the slope cutting and stability of landslide. Slope angle was flatted with 3H:2V geometry and stabilized with piling. The results indicated safety factors of 1.95 and 1.17 in the static and pseudo-static states, respectively, while the maximum bending moment with single pile (SP) in the pseudo-static state was 5.69 MN. Maximum bending moment of the pile around the slip surface was significantly large and more than the bending moment capacity of the pile. Due to the large bending moment on the pile, pile-to-pile cap connections (two pile group: 2PG) should be designed at the toe of the slope. The obtained results showed reduction of this parameter to 2.48 MN. Thus, it can be concluded that 2PG is a suitable stabilization method for the Manjil landslide.
Mehdi Zamani, Ali Nikjoo,
Volume 14, Issue 5 (12-2020)
Abstract

A jointed rock mass presents a more complex design problem than the other rock masses. The complexity arises from the number (greater than two) of joint sets which define the degree of discontinuity of medium.  The condition that arises in these types of rock masses is the generation of discrete rock blocks, of various geometries. They defined by the natural fracture surfaces and the excavation surface. Stability problems in blocky jointed rock are generally associated with gravity falls of blocks from the roof and sidewalls. Whereas for block defined in the crown of tunnel,the requirement is to examine the potential for displacement of each block under the influence of the surface tractions arising from the local stress field and the gravitational load, in this paper various types of wedge formation in the crown of tunnel due to intersection of joint sets with various dip were examined. The state of stability of the wedge was then assessed through the factor of safety against roof failure. Following that the formed wedges in New York city and Washington D.C tunnels crown were investigated with limiting equilibrium analytical method and by use of Hoek and Brown failure criterion. The obtained results from analytical method corresponded with field observation.
 
Prof. Amir Hamidi, Mr. Mahdi Sobhani, Ms. Farzaneh Rasouli, Ms. Marjan Sadrjamali,
Volume 16, Issue 1 (5-2022)
Abstract

The goal of this study was improvement of sandy soil using a combination of polystyrene foam container waste and Portland cement. For this purpose, Babolsar sand was used as the base soil. Strips of disposable polystyrene foam container waste in “chips” of 50 ´ 5 mm and 50 ´ 10 mm were added to the soil at 0.0%, 0.1%, 0.2% and 0.3% by weight along with 3% Portland cement at a relative density of 70%. All samples were cured for 7 days under saturated conditions and then tested using a large-scale direct shear apparatus. The results showed that, in both cemented and uncemented samples, the addition of foam chips increased the cohesion and internal friction angles, which increased the shear strength of the soil. At higher percentages and using larger-sized foam chips, the shear strength increased even more. In uncemented samples, the stiffness did not change with the addition of foam chips, yet the final dilation of the samples decreased. In cemented samples, both the stiffness and softening behavior after the peak strength point decreased. The final dilation of the cemented samples increased at higher foam chip contents and for the larger sized chips. The results of numerical analysis showed that the use of foam chips increased the safety factor of a slope improved in this manner. It also was found that the foam chips with a lower length-to-width ratio had a greater effect on increasing the safety factor of the tested slopes.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb