Search published articles


Showing 9 results for Coefficient


Volume 2, Issue 2 (3-2008)
Abstract

It’s most crucial issues, evaluation of jointed rock masses strength for surface and underground structures behavior analysis. That’s not enough laboratory tests that was done on intact samples can’t preparing index of rock mass properties in the large scale. On the other hand, doing experience tests aren’t accepted for the assessment insitu rock mass strength, especially in the feasibility studies. While, it was happen slip surfaces in rock mass the best method to estimation of rock mass strength values is previous slides back analysis. Conventional method is used for this problem solving, Mohr-Coulomb and Hoek-Brown failure criteria. In this method essential rock mass parameters are determined with a lot method such as, engineering rock mass classification. According to the large changes of Sungun copper mine rock mass properties, for determination of mine slope material cohesion strength and internal friction angle uncertainties, effective parameters on rock mass properties are supposed as random variables statement finally for each run of drilling process rock mass classification was done. In this study, rock mass classification of Sungun copper mine slopes was done by using RMR and GSI methods. Confidence level of geotechnical parameters are determined 90% approximately. Then Monte-Carlo simulation method (MCSM) is used to produce the probability density function of mentioned random variables(C, ϕ). Result shows random variables of rock mass properties simulating were done with a suitable standard deviation and coefficient of variation.

Volume 4, Issue 2 (5-2011)
Abstract

The Alborz dam rock foundation is composed of marl and sandstone. With regard to the proposed plan for the grout curtain in marly rocks (relatively soft and plastic( which is significantly different from the hard and brittle rocks, the boreholes spacing (influence radius slurry), injection pressure (resistance rock), and even the composition and concentration of slurry are important. In the present paper, in order to evaluate the grout curtain of Alborz Dam, emphasis has been placed on two important parameters, namely, the coefficient of permeability and cement take. The results of cement take suggest that the distance between the primary boreholes is long and there is no proper connection between the primary and secondary boreholes. Moreover, grouting results of the fifth and sixth series of grout holes imply that the depth of some of the sixth series of grout holes has not been attained at the water tightening surface. A review of the rate of the cement take - time - pressure graphs and cement take - time graphs on the right abutment indicates that the injection pressure has not been applied in accordance to marly rocks leading to unfavorable phenomenon of opening and closing of joints (hydrojacking). Notably, the check holes results on the right abutment indicate that water tightening at this area has been provided a satisfactory and acceptable job.
M Davoodi, Ali Ghanbari, S. Abedini,
Volume 9, Issue 3 (12-2015)
Abstract

The pseudo-static analysis is one of the conventional methods in embankment dams design and International Commission on Large Dams (ICOLD) suggests using this method before ultimate dynamic analyses. In this research, the static, pseudo-static and dynamic analysis of Masjed Soleyman embankment dam was performed. Using dynamic and pseudo-static analyses results, the safety factor of critical sliding surface was calculated. Permanent displacements of critical sliding surface were evaluated by New mark method and the calculated safety factor was compared. Based on the comparison results in different water levels of the reservoir and by introducing a new equation, the variable horizontal acceleration coefficients in height of the dam body were calculated. Finally, the obtained horizontal acceleration coefficients were compared with the other criteria introduced in different embankment dam's design codes. Totally, the results indicate that the proposed method leads to a larger horizontal acceleration coefficient in higher parts of the dam body.
Maryam Yazdi, Ali Komak Panah,
Volume 9, Issue 4 (3-2016)
Abstract

As usage of reinforced soil structures is highly increased in seismic active zones, the analysis of dynamic behavior of these structures begins to be of great significance.  The present paper is an attempt to study the seismic behavior of reinforced soil retaining walls with polymeric strips. The consequences of the most principal parameters counting the length of reinforcement, reinforcement arrangements (zigzag vs. parallel), maximum base input acceleration and wave frequency on the wall displacement have been investigated for sensitivity analyses. The main drawback of numerical methods in dynamic analysis is being very time consuming. Therefore, determination of equivalent coefficients is a suitable, easy and beneficent approach to converge   results of   pseudo-static and dynamic methods. In this case, a relatively accurate design is achieved by using pseudo-static method that takes less time. To this end, an earthquake equivalent horizontal acceleration coefficient is proposed by considering horizontal displacement of the wall as the basis for comparison
Alimohammad Ajorloo, A. Yadolahi, A.r. Zolfaghari,
Volume 9, Issue 4 (3-2016)
Abstract

The use of heavy concrete as a protective shield against high-energy gamma rays is very common. It is also an effective, versatile and economical material. The heavy concrete production can use lead slag as raw materials. The use of lead slag in the production of concrete blocks saves natural resources and reduces the environmental problems caused by the accumulation of industrial waste. However, concrete production, due to the presence of heavy metals with high atomic number can be used as an effective shield against gamma radiation. This study examines the use of lead slag produced in the battery recycling process as concrete aggregates. For this purpose, strength and gamma-ray attenuation coefficient for concrete samples prepared by replacing 40 to 60 percent lead slag instead of natural aggregate. The effect of 1 to 5 percent lead powder in setting time of concrete was measured. The results showed that by increasing the amount of lead slag, density, mechanical strength and gamma-ray attenuation coefficient for concrete samples increased significantly, but lead powder delays setting time of cement paste. In general, appropriate lead slag concrete construction with minimal thickness, reduce the cost of protection and provides the highest level of attenuation
Ali Massumi, Maryam Rahmati Selkisari,
Volume 11, Issue 3 (1-2018)
Abstract

In recent decades many researchers have studied on the damage assessment of structures after a seismic event. To assess the damage of structures under an earthquake, it is so important to study the correlations between earthquake parameters and damages of the structures. A lot of seismic parameters have been defined by researchers to characterize an earthquake. Spectral parameters of an earthquake convey a variety of information about ground motion, so they can properly characterize an earthquake. Also a lot of damage indices were proposed by researchers to quantify the damage of the structures or to rank their vulnerability relative to each other. Park-Ang index is one of the best indices to describe the damage of a structure. In this paper, the correlations between spectral parameters of earthquakes and Park-Ang indices are studied. Three RC frames with different height are analyzed under far-fault earthquake records by nonlinear dynamic analyses. The correlations between spectral parameters and Park-Ang indices of the frames are calculated. The results show that in all the frames most of spectral parameters have strong correlations with damage intensity. In order to estimate the damage potential of an earthquake, some spectral parameters which have high correlations with damage intensity can be proper indices. Housner intensity, acceleration spectrum intensity and velocity spectrum intensity are shown to have strong correlations with damage intensity. In this paper, a new spectral parameter which has high correlation with damage intensity is achieved. 
, ,
Volume 12, Issue 3 (12-2018)
Abstract

Introduction
Texture coefficient (TC) is a method of quantification rock texture by using the image of rock thin sections and image analysis. Many researchers have studied the effect of TC on engineering properties in different rock types (Ozturk et al., 2014). Also, some researchers are expressed that engineering properties of sedimentary rocks are mainly influenced by rock texture (Fahy and Guccione, 1979; Ulusay et al., 1994; Eberli et al., 2003; Khanlari et al., 2016; Ajalloeian et al., 2017). Carbonate rocks which are mainly sedimentary rocks are used in many different projects in Iran. In this research by using of TC, rock texture is quantified and also effects of TC are investigated on engineering properties of some carbonate rocks.
Grain shape and size can be quantified by the length (L), width (W), area (A) and perimeter (P) which are used to formulate the tow coefficients including aspect ratio (AR) and form factor (FF). Also, packing density can be quantified by area weighting of grains (AW) which is the relative proportion of matrix and grains. Angle factor (AF) is used to quantify the angular orientation of grains that is calculated only for elongated grains. The AF is computed by class weighted system applied to acute angular differences between elongated grains (Howarth and Rowlands, 1986, 1987).
High values of these factors can be interpreted as a rock texture which influences the geotechnical properties. The quantitative assessment of rock texture is formulated by these factors in Eq. (1) (Howarth and Rowlands, 1987). 
                     Eq. (1)
where N0 and N1 are the numbers of grains whose aspect ratio is below and above tow, respectively; FF0 and AR1 are the arithmetic mean of discriminated FF and AR, respectively; and AF1 is proposed to divide the AF value by 5 (AF1=AF/5).
TC equation is presented to evaluate mechanical properties like strength and drillability in different rocks, but some researchers found a high correlation between TC with other engineering properties of rocks. Generally, many researchers proposed TC as a good approach of describing and classifying different rocks and predicting some engineering properties in some rocks (Howarth and Rowlands, 1987; Ersoy and Waller, 1995; Ozturk et al., 2004; Alber and Kahraman, 2009; Ozturk and Nasuf, 2013; Ozturk et al., 2014).
Material and methods
28 samples of carbonate rocks were gathered from different Formation of Iran. Rock thin section for each sample was made to calculate TC value. TC was determined by a new method of image analysis. Also, some rock mechanics tests including unit weight, water absorption, porosity, point load index, uniaxial compressive strength (UCS), slake durability index and Los Angeles abrasion loss are conducted. Rock samples are tested according to the international standard ISRM (2007). The dependent variable is engineering properties and the independent variable is TC. The best nonlinear relations with highest correlations (R2) were aimed to predict the engineering properties, to clarify the relationships between them. The efficiency of each prediction equations was investigated by the root mean square error (RMSE) and value account for (VAF). In each samples belonging to the same Formation, regression analysis has been done and compared to the results of all samples and also for UCS and previous equations presented by other researchers.
Results and discussion
There is a significant correlation between TC with some engineering properties. Highest correlation is between TC and UCS (R=0.942) and the lowest with point load index (R=0.635). Overall, when the TC increased, parameters like unit weight, point load index, USC, and durability index increased too, but water absorption, porosity, and Los Angeles abrasion decreased. Increasing TC is correlated with enhancing geomechanical properties of carbonate rocks. Improving engineering properties of rocks (like UCS, Brazilian tensile strength, Young’s modulus, density, shore hardness, porosity and point load index) by increasing TC value are presented by different researchers on different rocks (Howarth and Rowlands, 1987; Ersoy and Waller, 1995; Azzoni et al., 1996; Ozturk et al., 2004; Alber and Kahraman, 2009; Ozturk and Nasuf, 2013; Ozturk et al., 2014). However, in this research, data is limited to carbonate rocks that are abundant sedimentary rocks. Some researcher mentioned that geomechanical properties of sedimentary rocks are mainly influenced by texture (e.g. Fahy and Guccione, 1979; Ulusay et al., 1994; Eberli et al., 2003). In addition, It is mentioned that the strength of carbonate rocks are related to the various textural parameters (Tugrul and Zarif, 2000; Torok and Vasarhelyi, 2010; Jensen et al., 2010; Ajalloeian et al., 2016). Carbonate rocks don't have varied mineralogy's, but the texture in these rocks could be variable.
Results show that the highest correlation index is between TC and UCS and its correlate according to the other investigation (Howarth and Rowlands, 1987; Ozturk et al., 2004). TC equation doesn’t cover all the criteria of rock texture, but it has a good correlation with some engineering properties of carbonate rocks. It can be possible to predict UCS, density and water absorption with VAF accuracy with more than 70 percent and lowest RMSE. TC can be showed some engineering properties of carbonate rocks. Therefore, it can be used in the preliminary design of the project for rock mechanic purposes and obviously, time and cost will be reduced. Moreover, it is very useful for a situation that suitable and enough samples cannot be extracted. It is important that rock samples don’t have any alteration and weathering of minerals and macroscopic heterogeneity.
 
 
Conclusion
In this research, the effect of texture coefficient as a factor that represents the texture of rocks on physical, mechanical and durability properties of carbonate rocks in some parts of Iran was evaluated. Furthermore, it is a time-consuming process to determine the TC of rock, but preparing rock thin sections and microscopic analyses are a part of the preliminary studies in engineering geology. When image analysis methods which are used to determine TC, the time is shortened and accuracy will be increased. TC can be calculated simply by image analysis, but it doesn't cover all the criteria of rock texture. In addition, in TC equation, some factors play an important role, but some factors don’t have a direct effect, and these factors are not fully acknowledged in the original concept of TC. TC equation is presented to evaluate mechanical properties like strength and drillability in different rocks, but some researchers found a high correlation between TC with other engineering properties of rocks. The results indicate that TC value has a direct correlation with UCS, density, durability index and point load index and also, has a reverse correlation with water absorption, Los Angeles abrasion loss and porosity. The strong relationship is between TC and UCS (R2=0.92) and the weak relationship is between TC and porosity (R2=0.58). With regression analysis and TC value, it could be predicted UCS, density and water absorption with accuracy more than 70% VAF which considering previous equations and the proposed equation obtained from this research for UCS., it is showed that although the same trend exists, the noticeable difference is available. However, more studies are needed for investigating by more samples and different rock types and statistical analysis. 
./files/site1/files/123/7Extended_Abstract.pdf
Reza Nassirzadeh Goorchi, Mehdi Amini, Hossein Memarian,
Volume 13, Issue 2 (8-2019)
Abstract

Introduction
One of the most sensitive and important issues in some civil engineering projects is slope design and application. The process of slope design always involve many uncertainties. Hence, it is impossible to accurately comment on its stability or instability. Most of the uncertainties in the slope stability analysis are related to the nature of materials, geometry, environmental conditions, model errors, and measuring errors as well. Therefore, the slope stability analysis with a deterministic approach which uses the concept of safety factor would often not result satisfactory. Consequently, the use of probabilistic methods is more advised. Accordingly, in recent years, the probability analysis has been used to slope stability analysis. In these analyses, the effective quantities of slope stability are considered as statistical distributions, and the reliability coefficient would then be a statistical distribution. Likewise, one of the approaches to simulate uncertainties in the probabilistic analysis is to use the variation coefficient. If the variation coefficient changes, the probability of failure will change accordingly. When the variation coefficient becomes a larger number, costly solutions are required to reduce the probability of failure. If the variation coefficient becomes low, the reliability will be increased and the required costs to reduce the probability of failure will be decreased. Therefore, determining the amount of variation coefficient in these analyses is very important. Furthermore, the correlation coefficient between the quantities is another effective parameter in computing the probability of failure.
Material and methods
In this research, the stability analysis of the slope facing the spillway of the Shiraz Kavar dam has been done in two probabilistic and deterministic methods. Since circular slip probability is more likely than other types of failure, in the analysis of the stability of this slope, the problem of circular failure is very important, and an appropriate equilibrium program should be used for circular failure analysis. Therefore, SLIDE software was used to slope stability analysis. For material behavior, the Hook-Brown failure criterion was applied. In order to determine the strength parameters of the criterion, Geological Strength Index (GSI), uniaxial compressive strength (UCS) and rock constant parameter mi were used. For crushed rock with a moderate quality of crushing, the GSI quality of the rock mass was about 23 to 38, which the average value of that for the rock mass of the overflow was assumed 35. Also, the uniaxial compressive strength of the rock was evaluated about 50 to 100 MPa with an average value of 75 MPa. In addition, the value of mi was 10, and due to mechanized drilling, the disturbance factor was considered to be 1. The amount of unit weight was assumed to be 22 kN/m3. The initial model used for deterministic and probabilistic analyses, is the Morgenstern-Price model. To conduct probabilistic analyses, Monte Carlo simulation was performed using random sampling method (RS-MC) and 200,000 sampling were used to converge the simulation results. To determine the coefficient of variation and the probability distribution of UCS, GSI and mi, the proposed values ​​of Hook (1998) were applied and for unit weight (γ) James Rodriguez and Sitar (2007) studies were used. Also, the minimum and maximum values ​​of UCS and GSI are determined based on the results of experiments, and Third Sigma rule was utilized for mi and γ quantities. Since the earthquake phenomenon is rarely of great intensity and the number of small earthquakes is higher, therefore the truncated exponential distribution function can be in good agreement with the results of the earthquake. Usually, the maximum magnitude of the earthquake acceleration coefficient is twice that of the average.
Results and discussion
In the presented paper evaluation denotes that the safety factor computed by probabilistic analysis is given as a distribution function. The function provides a clearer view of failure condition. However, a deterministic analysis only illustrates a certain value for the failure. In addition, the results of the probabilistic analysis show that it is possible to optimize the dip of the slope; such that it remains completely stable and the volume of earthwork is also minimized. Therefore, by using probabilistic analysis, the optimal dip of the slope was determined. In these circumstances, the amount of earthwork was decreased by 28,000 cubic meters. Also, the sensitivity analysis of the variation coefficient and correlation coefficient between parameters are analyzed. The results of the sensitivity analysis of the failure probability versus the variation coefficient of the quantities showed that the quantities of sensitivity factor for static conditions is greater than the corresponding pseudo-static, and the GSI amount is the highest, while the specific gravity has the least effect on the probability value. In addition, the analysis indicated that if the GSI coefficient of over 21% is selected, the probability of a static failure is higher than the permissible limit. Also, increasing the variation coefficient of quantities by as much as 50% exhibits that the probability of static failure is still below the permissible limit. Also, the correlation coefficient between UCS and GSI shows that the higher variation coefficient of the quantities is chosen, the more variations of failure probability compared to . In the case of pseudo-static conditions, variations in the failure probability are linear in relation to , while in static conditions, these changes are exponential for an increase of 50% in the variation coefficient. Also, to reduce the coefficient of variation by 50%, the probability of static failure for different values of  is approximately zero.
./files/site1/files/132/8Extended_Abstracts.pdf
Miss Sooror Mazraeasl, Mr Farzad Akbari, Ms Elahe Iraniasl, Miss Leila Hosseini Shafei,
Volume 18, Issue 1 (5-2024)
Abstract

Groundwater is one of the main sources of water supply for agriculture, drinking and industry in Iran, especially in areas with arid and semi-arid climates. Therefore, due to the high importance of groundwater resources, it is necessary to know the hydrodynamic parameters in order to determine the natural flow of water and manage the optimal utilization of groundwater resources. Considering the role of the Daloon-Meydavood aquifer in providing part of the water needed in the study area, especially for agricultural purposes, the hydrodynamic parameters of this aquifer were estimated using the methods of grain size analysis, geophysics and pumping test. The parameters were calculated by all three methods and validated using the flow rate of the exploitation wells. In all three methods, the hydrodynamic parameters (Hydraulic conductivity, Specific yeild, transmissivity coefficient) are the highest in the north and northeast and the lowest in the south and northwest. The results showed that 2 methods including  grain size analysisand pumping test had the most similarity with the discharge map of the exploitationwells.
 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb