Search published articles


Showing 2 results for Leakage

M Kordavani, N Hafezi Moghadas, Ramazan Ramazani Omali,
Volume 8, Issue 4 (3-2015)
Abstract

The Minab (Esteghlal) dam site is located in east of Minab city in Hormozgan province. The Minab active fault cross the reservoir of dam and have an important role in leakage from the reservoir. The joint study of area in ten stations around the reservoir of dam display the four main joint sets. For assessment of leakage of reservoir, the permeability of rock masses outcrops in the reservoir is estimated by hydraulic conductivity HC experimental model. For this, the RQD, GSI and other characteristics of rock mass around the reservoir were measured in field studies. The results show that the permeability of embankments changes from 9.14×10-6 up to 2.02×10-5 m/s. Also the water lost for three different condition of minimum, mean and maximum level of water table is about 0.14, 0.20 and 0.29 m3/s. The results indicate that the discontinuities with trend of east-west and northeast-southwest and also shear fault zone of Minab have main effects in leakage of reservoir.
Kamal Ganjalipour, Seyyed Mahmoud Fatemi Aghda, Kamal Nabiollhi,
Volume 16, Issue 3 (12-2022)
Abstract

Electromagnetic methods in applied geophysics are advancing rapidly. Since the TDR system has grown, its use has led to innovative applications and comparisons with other previous measurement methods. A TDR system consists of a radar (electromagnetic) receiver and generator, a transmission line, and a waveguide. The electromagnetic pulse generated from inside the conductor cable moves towards the waveguide and is tested through the waveguide into the environment under test. In the last few years, the use of the TDR system to identify water leakage situations has been expanding. In this article, by performing tests on two-strand telecommunication cables as TDR sensors, the ability and accuracy of the time domain reflectometry method in detecting leakage situations has been evaluated. In this research, the two-stranded cable was buried under GC gravel clay material, and by increasing the percentage of soil moisture stepwise at two points, the sensitivity of the TDR method to the changes in moisture around the cable was investigated. Based on the TDR waveforms, the points of reflection coefficient changes are located at the distances of 9.5-9 and 4.5 meters, which is completely consistent with the actual distance of the test points. In this research, TDR moisture meter made by soil moisture company model 6050x1 was used. The results of this research show that the TDR method has the ability to be used as a monitoring system to detect leakage in dams, dikes and other geotechnical structures.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb