Search published articles


Showing 25 results for Rock


Volume 4, Issue 2 (5-2011)
Abstract

In this research, it is attempted to develop a new classification system for evaluating the rock sawability with respect to affective and major parameters. In this new classification system, four major characteristics of rock are selected for evaluating the rock sawability. In total, each rock takes a new score from 10 to 100 and classified into five classes: very poor, poor, fair, good and very good by new classification system. The new calculated rock sawability index (RSi) can be use as a useful index for evaluating the rock sawability. In the present paper, the relationship between ampere consumption, RSi and machine parameters are investigated by multiple regression. For this propose, 12 stones are tested by new sawing machine under different machining conditions (different depth of cut and feed rate). The results of this step are used as input data in SPSS software. Finally, two predicted models are presented with respect to machining parameters and RSi. These new models in stone factories can give a good viewpoint of energy consumption
R Ajalloeian, M Mohammadi,
Volume 5, Issue 1 (9-2011)
Abstract

Abstract
(Paper pages 1059-1076)
Physical and mechanical properties of intact rocks are very important in civil engineering works that interact with rock such as underground structures, dams,foundations on rock, and rock slopes. Therefore geomechanical parameters such as compression strength and deformation modulus of rock can have fundamental importance in the different stages of design. Determination of these parameters is time consuming and costly. Since Asmary formation has broad outcrop in the west and southwest of Iran and many large projects are located in this formation, therefore it is a requirement to accomplish the present research. This paper is dealing to analyzing data from laboratory of two major projects of the Khersan 1 and 2 dam sites. In this regard, the physical, mechanical, dynamic and durability properties of intact rock and geology controlling agents of these changes has been evaluated and analyzed. Finally, new experimental relations between different parameters have been presented.
Reza Ghaderi -Meybodi, Gh Khanlari,
Volume 6, Issue 2 (4-2013)
Abstract

One of the geotechnical hazards in the tunnels under high overburden and high in situ stresses is the phenomenon of rock burst. Rock burst is a typical geologic phenomenon caused by excavation in rock masses. In this phenomenon, because of stress released and explosion in rock masses, they are broken as large and small pieces and are distributed, so that leads to damage of peoples or equipments. Therefore, familiar with this phenomenon and its mechanism of occurrence, is need to analyze this issue. The second part of water supply Karaj-Tehran tunnel with a length of 14 km and about 4.5 m diameter is located in Tehran province. Rock burst analysis has been carried out in the tunnel from kilometer 6 to 9.5 that is critical section because of high overburden (up to 800 m) and presence of faults and crushed zones. In this paper, for predicting rock burst in the critical section of second part of Karaj-Tehran tunnel, four criteria including, Strain energy, Rock brittleness, Seismic energy and Tangential stress criterion are used. Analysis results show that units with high overburden have high possibility of rock burst. 
Ata Aghaeearaee,
Volume 8, Issue 2 (11-2014)
Abstract

This paper presented the feasibility of developing and using artificial neural networks (ANNs) for modeling the monotonic large scale triaxial tests over angular, rounded rockfill and materials contained various percentages of fines as a construction material in some dams in Iran. The deviator stress/excess pore water pressure versus axial strain behaviors were firstly simulated by employing the ANNs. Reasonable agreements between the simulation results and the tests results were observed, indicating that the ANN is capable of capturing the behavior of gravely materials. The database used for development of the models comprises a series of 52 rows of pattern of strain-controlled triaxial tests for different conditions. A feed forward model using multi-layer perceptron (MLP), for predicting undrained behavior of gravely soils was developed in MATLAB environment and the optimal ANN architecture (hidden nodes, transfer functions and training) is obtained by a trial-and-error approach in accordance to error indexes and real data. The results indicate that the ANNs models are able to accurately predict the behavior of gravely soil in CU monotonic condition. Then, the ability of ANNs to prediction of the maximum internal friction angle, maximum and residual deviator stresses and the excess pore water pressures at the corresponding strain level were investigated. Meanwhile, the artificial neural network generalization capability was also used to check the effects of items not tested, such as density and percentage smaller of 0.2 mm.
Mr Nikudel, H Bahramkhani, M Khamech, A Jamshidi,
Volume 8, Issue 2 (11-2014)
Abstract

One of the most important issues in the design and implementation of engineering structures is to evaluate and investigate their durability against processes of consecutive wear, wet and dry. The durability of rock is resistance against chemical and physical weathering, the shape, size and status of the initial appearance in a long time and environmental conditions prevailing in the rock, hence it is important to evaluate the durability of rock. Since the device of standard durability (Franklin & Chandra, 1972) designed to evaluate and investigate durability of soft and argillites rocks. So, appears to be essential to design a durability device, which can evaluate hard rocks. For this purpose, Researchers of the Department of Geological Engineering, Tarbiat Modares University, durability device as "large-scale durability device " was designed and built which the length and diameter of the device, is 6 and 4.3 times standard durability device, respectively, and needs 10 samples with weight of 400 to 600 g. In order to investigation the applicability of this device for hard rocks durability, we selected 17 building rocks samples of the igneous, sedimentary, metamorphic and pyroclastic rocks. Then their mineralogical, physical and mechanical properties were investigated. More, experiments of standard and large-scale durability up to 15 cycles were performed and data obtained were analyzed. The results show that, the large-scale durability device than standard durability, have more applicability for evaluating the durability of hard rocks.
F Amini Beiram, Ebrahim Asghari, M Hajialavi Bonab,
Volume 9, Issue 1 (6-2015)
Abstract

The Kandovan village is one of the tourist attractions in East Azarbaijan province of Iran, whose rural houses were excavated within the cone-shaped pyroclastic rocks (in terms of local called keran) several hundred years ago. The present paper discusses the role of engineering geological properties of Kandovan pyroclastic rocks. Kandovan pyroclastic rocks have low resistance against weathering and erosion because their components are plagioclase minerals and pumice fragments with low resistance, welding, sorting and high sphericity and rounding. Although weathering and erosion along existing joints and fractures is the most important causative agent of cone-shaped forms but there is the possibility of further damage of rocks due to continuing these processes. High porosity of rocks has caused that their high capacity for water absorption. High water absorption percent increased sensitivity of rocks against expansion and contraction by freezing-thawing and wetting-drying cycles and low hardness and low their internal strength caused the rocks weathered and disintegrated due to environmental factors. Furthermore, the weak texture of the pyroclastic rocks have caused easy erosion of those by surface waters and wind.
Amir Haghi, M Asef, Riaz Kharrat,
Volume 9, Issue 2 (9-2015)
Abstract

In this research attempts were made to estimate the in-situ stresses acting on a hydrocarbon reservoir based on routine activities of acid injection in oil reservoir. It was found that the relation between the re-opening pressure of fracture and principal in-situ stresses can be estimated using rock mechanics equations for the circular underground cavities. An appropriate relation between the maximum and minimum horizontal principal in-situ stresses and reservoir parameters such as permeability, reservoir pressure, Young’s modulus, acid viscosity, injection flow rate and etc., was developed by using the well-known Darcy equations for fluid flow in porous media. Accordingly, knowing the flow rate of acid injection during well operations and some other reservoir parameters, in-situ stresses may be estimated. The method was then successfully applied to a large carbonate reservoir as a case study in south-west of Iran. Maximum and minimum effective horizontal stresses were calculated by employing the presented method. 
, Hassan Moomivand, ,
Volume 10, Issue 1 (8-2016)
Abstract

Non-destructive methods such as ultrasonic wave velocity are extensively used for estimating physical and mechanical properties of rock due to the simplicity, economical, fast and harmless nature. Rock constructions have been made worldwide from past to present. Determination of strength of rock constructions such as archeological evidence is not possible using conventional rock strength tests. Developing a cheap, simple, non-destructive, efficient and accurate method to estimate the strength of such constructions can be useful. Rock blocks and constructions have various shapes and sizes. Rock blocks having various shapes and sizes have been prepared from marble, travertine, granite, and limestone and ultrasonic wave velocity at various directions of the blocks dimensions and the uniaxial compressive strength of cylindrical core obtained from the blocks have been measured. The results show that shapes and sizes have no effect on the ultrasonic wave velocity. At the end relationships between uniaxial compressive strength and ultrasonic wave velocity have been determined. The uniaxial compressive strength of blocks and rock constructions can be estimated by the obtained relationships using non-destructive, simple and indeed low cost method of ultrasonic wave velocity.


, Mojtaba Rabiei Vaziri, Hamidreza Mohammadi Azizabadi,
Volume 10, Issue 1 (8-2016)
Abstract

Hoek and Brown suggested a method to estimate the strength and deformation modulus parameters of rock masses. The method was then widely used in rock engineering designs. In such designs, the mean values of Hoek and Brown parameters are often used which are not proper values due to the variability of rock mass properties within a great range of values. In such cases, probability analysis of rock mass properties is highly important. The geological strength index is one of the most important parameters in Hoek and Brown equations. Determination of this parameter includes greater uncertainties than determining other parameters. In this paper, based on the results of rock mechanical tests carried out on rock samples of Gol-Gohar iron ore mine, and the required field surveys, the sensitivity of rock mass geomechanical properties on the type of the statistical distribution function of the geological strength index in statistical analysis of these parameters using Monte Carlo simulation method was investigated. The results showed that the sensitivity of Hoek and Brown equations to determine different rock mass geomechanical parameters varies as the type of the statistical distribution function of the geological strength index changes. The sensitivity of geomechanical parameters such as internal friction angle, cohesion, total strength and rock mass modulus on the type of the statistical distribution function of the geological strength index is much less than parameters such as uniaxial compressive strength and tension strength of rock mass. The greatest variations based on changes of the type of the statistical distribution function of the geological strength index are less than 5% for the internal friction angle, cohesion and total strength, less than 10% for the modulus, and less than 25% for the uniaxial compressive strength and tension strength.


Hamed Rezaiy, ,
Volume 10, Issue 2 (11-2016)
Abstract

Marly rocks of Abtalkh formation were classified by Q, RMR, RSR and RQD rock mass classification systems using 222 meters logs from exploratory boreholes in Doosti dam site. The results show that the RMR is the most suitable method for classification of studied rock masses and has highest correlation coefficient with RQD. The validity of different Q-RMR equations was studied using error ratio (ER). Cameron et al. (1981) and Morno (1982) equations have lowest ER and highest validity for studied marlstones. Bieniawski (1989) and Cameron (1981) relationships are lower and higher limits of equations for marly rocks respectively. 


Seyed Hamed Moosavi, M Sharifzadeh ,
Volume 10, Issue 4 (5-2017)
Abstract

Combination of Adoptive Network based Fuzzy Inference System (ANFIS) and subtractive clustering (SC) has been used for estimation of deformation modulus (Em) and rock mass strength (UCSm) considering depth of measurement. To do this, learning of the ANFIS based subtractive clustering (ANFISBSC) was performed firstly on 125 measurements of 9 variables such as rock mass strength (UCSm), deformation modulus (Em), depth, spacing, persistence, aperture, intact rock strength (UCSi), geomechanical rating (RMR) and elastic modulus (Ei). Then, at second phase, testing the trained ANFISBSC structure has been perfomed on 40 data measurements. Therefore, predictive rock mass models have been developed for 2-6 variables where model complexity influences the estimation accuracy. Results of multivariate simulation of rock mass for estimating UCSm and Em have shown that accuracy of the ANFISBSC method increases coincident with development of model from 2 variables to 6 variables. According to the results, 3-variable model of ANFISBSC method has general estimation of both UCSm and Em corresponding with 20% to 30% error while the results of multivariate analysis are successfully improved by 6-variable model with error of less than 3%. Also, dip of the fitted line on data point of measured and estimated UCSm and Em for 6-variable model approaches about 1 respect to 0.94 for 3- variable model. Therefore, it can be concluded that 6-variable model of ANFISBSC gives reasonable prediction of UCSm and Em.


Ibrahim Naeimifar, Shahaboddin Yasrobi, Ali Uromeie, Hatef Hashemi,
Volume 10, Issue 4 (5-2017)
Abstract

Evaluation of the excavation-induced ground movements is an important design aspect of supporting system in urban areas. This evaluation process is more critical to the old buildings or sensitive structures which exist in the excavation-affected zone. Frame distortion and crack generation are predictor, of building damage resulted from excavation-induced ground movements, which pose challenges to projects involving deep excavations. Geological and geotechnical conditions of excavation area have significant effects on excavation-induced ground movements and the related damages. In some cases, excavation area may be located in the jointed or weathered rocks. Under such conditions, the geological properties of supported ground become more noticeable due to the discontinuities and anisotropic effects. This paper is aimed to study the performance of excavation walls supported by nails in jointed rocks medium. The performance of nailed wall is investigated based on evaluating the excavation-induced ground movements and damage levels of structures in the excavation-affected zone. For this purpose, a set of calibrated 2D finite element models are developed by taking into account the nail-rock-structure interactions, the anisotropic properties of jointed rock, and the staged construction process using ABAQUS software. The results highlight the effects of different parameters such as joint inclinations, anisotropy of rocks and nail inclinations on deformation parameters of excavation wall supported by nails, and induced damage in the structures adjacent to the excavation area. The results also show the relationship between excavation-induced deformation and the level of damage in the adjacent structure.


M Ataei, Sh. Hosseini, S.h Hoseinie,
Volume 11, Issue 1 (8-2017)
Abstract

./files/site1/files/4Extended_Abstract.pdfExtended Abstract
(Paper pages 73-90)
Introduction
Up to now, various indexes and methods have been presented for evaluating the abrasivity of rocks. In total, these methods can be divided to two main groups; the methods based on nature of rocks, methods based on heuristic tools. Schimazek F-abrasivity index is one of the most powerful and applicable indexes for evaluating the rock abrasiveness. This index uses the grain size, Brazilian tensile strength and equivalent quartz content for abrasivity analysis. Since the values of these parameters are equal in Schimazek index, therefore, in some cases this index doesn't have suitable ability to distinguish and classify the rock abrasiveness. This paper tries to modify the Schimazek index considering the weights of its applied parameters.
Material and Methods
In this research, Fuzzy Delphi Analytical Hierarchy Process (FDAHP) has been used to calculate the weight of dominant parameters in rock abrasivity. For this purpose several questioners have been distributed and the expert opinions were collected. The results showed that the quartz content, grain size and tensile strength have the weight of 0.4, 0.31 and 0.29 respectively and new Schimazek F-abrasivity index is as presented in equation (1).
    
In the next stage, in order to facilitate the application of new index, a new classification system was developed. This classification and related weighing graphs (Figure 1) help to change the discontinuous classification to continuous one.
Results and discussions
In order to verify the application of the new developed index, ten ornamental stones have been studied and the old and modified Schimazek indexes were calculated for all of them. Then, the cutting rate (sawing rate) of each stone was recorded in laboratory and the mathematical relationships between new and old indexes have been achieved. The results show that the new Schimazek abrasivity index has higher ability to predict the cutting rate than old one (Figure 2). 

 
Figure1. Continuous weighting for parameters of Schimazek F-abrasivity index


Figure2. Regression of old and new Schimazek F-abrasivity index with cutting rate of granite ornamental stones
Conclusion
Generally it could be concluded that, the main weakness of Schimazek F-abrasivity index which is the equality of parameters’ importance, has been removed by idea developed and confirmed in this study. The different weights which allocated to grain size, Brazilian tensile strength and equivalent quartz content in study, improves the Schimazek index applicability in rock engineering applications specially rock cutting and drilling. Therefore, it is recommended to use new method instead of old one in future applications.
 




 
Mehdi Hosseini, Koroush Abdolghanizadeh,
Volume 11, Issue 2 (11-2017)
Abstract

./files/site1/files/1.pdfExtended Abstract
(Paper pages157-174)
Introduction
Considering the fact that the estimation of mode  fracture toughness by testing is time-consuming and expensive. It might be associated with certain practical difficulties. Therefore, many researchers have attempted to propose experimental relationships in order to capture these problems. Gunsallus et al. (1984) and Bhagat (1985) experimentally found that mode  fracture toughness is related to tensile strength. Whittaker et al. (1992) have also proposed a number of relationships between mode I fracture toughness, tensile strength, point load index, uniaxial compressive strength and the velocity of sound waves. Bearman (1999) obtained an experimental relationship between mode I fracture toughness and point load index, while Brown et al. (1997) presented an experimental relationship between this parameter and density. Up to now no significant research effort has been made in this field in Iran, only Ayatollahi and Fatehi addressed rock fracture toughness. Although, Ayatollahi has not presented any experimental relationships. In the present research the three-point bending test was used on a cylindrical specimen containing a straight crack in order to determine the mode  fracture toughness, and the Brazilian test was employed to determine tensile strength.
Materials and Methods
The tests were carried out on six types of rocks, namely gray sandstone,
tuff, lithic tuff, travertine, andesite, and limestone. Sandstone, travertine, and limestone are sedimentary rocks, while andesite is an extrusive igneous rock, and tuff and lithic tuff are pyroclastic rocks (pyroclastic rocks resulting from volcanic eruptions that harden by sedimentation). Therefore, the studied rocks have different origins. In order to carry out the Brazilian and the three-point bending test, cores were prepared from these blocks. In order to perform the three-point bending test, specimens with diameter of 73 mm with a thickness of 30 mm were used. The samples were cut in two semicircular by a cutting machine, and a notch with length of 15 mm is created by a diamond saw.  Notch is vertical in the center of the semicircular samples.
The Brazilian test was performed on disc shaped specimens. In order to perform the Brazilian test, specimens with diameter of 51 mm and thick of 25 mm were used. The specimens are carefully placed under the curved jaws of the machine and then loaded until fracture.
Results and Discussion
A summary of the Brazilian and the three-point bending test results are presented in Table 1. The average value of test result pertaining to each rock is reported in Table 1.
Table 1. Summary of the Brazilian and the three-point bending test results
Specimen Tensile Strength (MPa) Fracture Toughness (MPa√m)
Limestone 3.74 1.23
Sandstone 7.14 1.63
Tuff 16.36 2.17
Lithic Tuff 4.34 1.01
Andesite 13.25 1.86
Travertine 8.27 1.14
In this study, it was attempted to propose an experimental relationship between mode I fracture toughness and the tensile strength of the rock.
In order to determine the relationship between the tensile strength and the fracture toughness, the tensile strength vs. fracture toughness diagram was plotted in Excel to obtain Eq. 1 and the coefficient of determination (R2) (Figure 1).

The coefficient of determination (R2) in Eq. 1 shows that almost 80 percent of the mode I fracture toughness variations can be estimated using the linear relationship (Eq. 1). The relationship is applicable for determining the mode I fracture toughness resulting from the three-point bending test on semicircular specimens containing a straight crack.

In the following, the results of this study are compared to those reported by Whittacker (1992) and Zhang (2002).
In order to examine the accuracy of the presented relationships, the Root Mean Square Error (RMSE) measure was used which is computed from Eq. 2. In the best case, RMSE is zero. 

In the relationships,   represents the fracture toughness obtained from testing while  is the fracture toughness estimated using the relationships.
Comparison of the obtained results indicate that the proposed relationship has the capability of precise estimation of the mode I fracture toughness of rocks.
Conclusion
Given the many difficulties associated with the direct estimation of fracture toughness, indirect estimation methods have been proposed. One of such methods is the estimation of mode I fracture toughness using tensile strength. A linear relationship with a coefficient of determination of 0.7977 was proposed. The accuracy of this relationship has been verified by comparing its results to those from previous studies.

 
, ,
Volume 12, Issue 3 (12-2018)
Abstract

Introduction
Texture coefficient (TC) is a method of quantification rock texture by using the image of rock thin sections and image analysis. Many researchers have studied the effect of TC on engineering properties in different rock types (Ozturk et al., 2014). Also, some researchers are expressed that engineering properties of sedimentary rocks are mainly influenced by rock texture (Fahy and Guccione, 1979; Ulusay et al., 1994; Eberli et al., 2003; Khanlari et al., 2016; Ajalloeian et al., 2017). Carbonate rocks which are mainly sedimentary rocks are used in many different projects in Iran. In this research by using of TC, rock texture is quantified and also effects of TC are investigated on engineering properties of some carbonate rocks.
Grain shape and size can be quantified by the length (L), width (W), area (A) and perimeter (P) which are used to formulate the tow coefficients including aspect ratio (AR) and form factor (FF). Also, packing density can be quantified by area weighting of grains (AW) which is the relative proportion of matrix and grains. Angle factor (AF) is used to quantify the angular orientation of grains that is calculated only for elongated grains. The AF is computed by class weighted system applied to acute angular differences between elongated grains (Howarth and Rowlands, 1986, 1987).
High values of these factors can be interpreted as a rock texture which influences the geotechnical properties. The quantitative assessment of rock texture is formulated by these factors in Eq. (1) (Howarth and Rowlands, 1987). 
                     Eq. (1)
where N0 and N1 are the numbers of grains whose aspect ratio is below and above tow, respectively; FF0 and AR1 are the arithmetic mean of discriminated FF and AR, respectively; and AF1 is proposed to divide the AF value by 5 (AF1=AF/5).
TC equation is presented to evaluate mechanical properties like strength and drillability in different rocks, but some researchers found a high correlation between TC with other engineering properties of rocks. Generally, many researchers proposed TC as a good approach of describing and classifying different rocks and predicting some engineering properties in some rocks (Howarth and Rowlands, 1987; Ersoy and Waller, 1995; Ozturk et al., 2004; Alber and Kahraman, 2009; Ozturk and Nasuf, 2013; Ozturk et al., 2014).
Material and methods
28 samples of carbonate rocks were gathered from different Formation of Iran. Rock thin section for each sample was made to calculate TC value. TC was determined by a new method of image analysis. Also, some rock mechanics tests including unit weight, water absorption, porosity, point load index, uniaxial compressive strength (UCS), slake durability index and Los Angeles abrasion loss are conducted. Rock samples are tested according to the international standard ISRM (2007). The dependent variable is engineering properties and the independent variable is TC. The best nonlinear relations with highest correlations (R2) were aimed to predict the engineering properties, to clarify the relationships between them. The efficiency of each prediction equations was investigated by the root mean square error (RMSE) and value account for (VAF). In each samples belonging to the same Formation, regression analysis has been done and compared to the results of all samples and also for UCS and previous equations presented by other researchers.
Results and discussion
There is a significant correlation between TC with some engineering properties. Highest correlation is between TC and UCS (R=0.942) and the lowest with point load index (R=0.635). Overall, when the TC increased, parameters like unit weight, point load index, USC, and durability index increased too, but water absorption, porosity, and Los Angeles abrasion decreased. Increasing TC is correlated with enhancing geomechanical properties of carbonate rocks. Improving engineering properties of rocks (like UCS, Brazilian tensile strength, Young’s modulus, density, shore hardness, porosity and point load index) by increasing TC value are presented by different researchers on different rocks (Howarth and Rowlands, 1987; Ersoy and Waller, 1995; Azzoni et al., 1996; Ozturk et al., 2004; Alber and Kahraman, 2009; Ozturk and Nasuf, 2013; Ozturk et al., 2014). However, in this research, data is limited to carbonate rocks that are abundant sedimentary rocks. Some researcher mentioned that geomechanical properties of sedimentary rocks are mainly influenced by texture (e.g. Fahy and Guccione, 1979; Ulusay et al., 1994; Eberli et al., 2003). In addition, It is mentioned that the strength of carbonate rocks are related to the various textural parameters (Tugrul and Zarif, 2000; Torok and Vasarhelyi, 2010; Jensen et al., 2010; Ajalloeian et al., 2016). Carbonate rocks don't have varied mineralogy's, but the texture in these rocks could be variable.
Results show that the highest correlation index is between TC and UCS and its correlate according to the other investigation (Howarth and Rowlands, 1987; Ozturk et al., 2004). TC equation doesn’t cover all the criteria of rock texture, but it has a good correlation with some engineering properties of carbonate rocks. It can be possible to predict UCS, density and water absorption with VAF accuracy with more than 70 percent and lowest RMSE. TC can be showed some engineering properties of carbonate rocks. Therefore, it can be used in the preliminary design of the project for rock mechanic purposes and obviously, time and cost will be reduced. Moreover, it is very useful for a situation that suitable and enough samples cannot be extracted. It is important that rock samples don’t have any alteration and weathering of minerals and macroscopic heterogeneity.
 
 
Conclusion
In this research, the effect of texture coefficient as a factor that represents the texture of rocks on physical, mechanical and durability properties of carbonate rocks in some parts of Iran was evaluated. Furthermore, it is a time-consuming process to determine the TC of rock, but preparing rock thin sections and microscopic analyses are a part of the preliminary studies in engineering geology. When image analysis methods which are used to determine TC, the time is shortened and accuracy will be increased. TC can be calculated simply by image analysis, but it doesn't cover all the criteria of rock texture. In addition, in TC equation, some factors play an important role, but some factors don’t have a direct effect, and these factors are not fully acknowledged in the original concept of TC. TC equation is presented to evaluate mechanical properties like strength and drillability in different rocks, but some researchers found a high correlation between TC with other engineering properties of rocks. The results indicate that TC value has a direct correlation with UCS, density, durability index and point load index and also, has a reverse correlation with water absorption, Los Angeles abrasion loss and porosity. The strong relationship is between TC and UCS (R2=0.92) and the weak relationship is between TC and porosity (R2=0.58). With regression analysis and TC value, it could be predicted UCS, density and water absorption with accuracy more than 70% VAF which considering previous equations and the proposed equation obtained from this research for UCS., it is showed that although the same trend exists, the noticeable difference is available. However, more studies are needed for investigating by more samples and different rock types and statistical analysis. 
./files/site1/files/123/7Extended_Abstract.pdf
, ,
Volume 12, Issue 3 (12-2018)
Abstract

Introduction
Safety and sustainability of infrastructures which were placed in or on rock mass mainly control by geometrically size distribution and physical and mechanical characteristics of rock blocks that is created by intersection of discontinuities. hence identification of rock blocks has a key role in mechanical analysis and hydraulic behaviour of jointed rock mass. Detection process of blocks have many applications in rock mechanic which could be referred to their use in the numerical methods like discrete element method or in analysis of continuous deformation of discontinuities. As pioneer researchers, Goodman and Shi, Warburton and Heliot could be known as leaders in the field of diagnosis of rock mass blocks. Warburton provides a method based on geometric parameters of rock mass and developed a software based on it. Warburton in his work assumed discontinuities as parallel and infinite. In the earlier works, discontinuities were considered as infinite panes. So, just convex blocks were distinguishable. Concave blocks were diagnosis in more detailed researches that is created by finite discontinuities. Basically, methods based on finite planes was classified into two branches. Aforementioned branches were based on blocks detection based on topology concepts and assemble of block elements. Lin at al. presented detection method that assumed discontinuities as finite planes and worked based on topology theory. This method could realize convex and concave blocks of rock mass. Ikegawa and Hudson, Jing presented the similar methods using more accurate process. Sharma et al. presented an equation for calculating the volume of rock blocks in their work. Ferreira provided a method based on graph theory which is better than other method considering time and complicity. Based on this method, firstly vertices were detected in two dimensions and then created a graph based in vertices and edges which in next step constitute polygons that are form in two-dimension blocks. In the present research, it is developed high-speed algorithms to identify the blocks. New method was developed in MATLAB software that by assuming infinite discontinuities and inclusion of a set of joints. we have identified created blocks and calculated their volume and at last block volume histogram were draw that paves the way to obtain their distribution function.
Material and methods
Infinite planes are used to simulate of discontinuities.in this study, each discontinuity is represented by a plane in a three-dimensional Euclidean space. To identify the block, a certain volume of rock mass space should be considered as study region. The studied volume is called domain. By the intersection of discontinuity planes in space, rocky blocks are created in the domain. First, vertices should be recognized at first as first step in block detection. Then, edges are diagnoses and after that it's time to specify the polygons and finally, polyhedron or blocks are obtained by joining edges together. Each vertex in space is created by the intersection of three nonparallel planes. In fact, the vertex is the interface of three planes in the Euclidean space. The next element in the block metric process is the diagnosis of the edges or the blocks' edges. All edges are sections on the lines which created by the intersection of the planes in space. first the parallel vector of all the lines resulting from the intersection of the pair of planes is obtained.
After detection of edges, it’s time to identify polygons that form key element of blocks. Each polygon of a block is formed from their constituent unit. In this step, polygons belong to each discontinuity plane is identified separately. Some edges are determined that are start from the end of selected edge between other edges. In this state, if there is just one edge, that edge is record as the next edge of first polygon. If there is more than one edge from the edge of the selected edges, the angle is calculated between each possible of end edge with the selected edge.
In the next step, it’s time to diagnosis polyhedrons that have created by discontinuities intersection. In the previous step, possible polygons were obtained for each discontinuity. In this stage, it is used the principle which is designed this algorithm that two polygons that formed a block have a common edge. So, the first polygon of first discontinuity is consider as first polygon of first block to recognize block.
Results and discussion
According to the developed algorithm, MATLAB software was used to model the discontinuities. The computational and graphic capabilities of this software have created a lot of attractions for most researchers to use its potential. The strengths of this software are high computing power with its graphical accuracy. The code developed in MATLAB is called RockBlock2 that is designed using a graphical user interface (GUI) to make it easy to use. To illustrate how the program works, there are 29 discontinuities given to the program. The program first takes the dip and dip direction of discontinuities along with the desired point on it and calculates the parameters that make up the equation of discontinuity planes.
Input data is stored in a separate Excel file that was previously introduced to the program. In the next step, the program attempts to identify the vertices. The program stores the coordinates of each corner, with the assignment of a number to it, in the matrix of the corners, which is in fact the Excel file that was previously introduced to the program to use in the next steps, after recognizing vertices on the area.
Identifying the edges is the next step that the program done. At this stage, the program begins to identify each single edge using the data from the previous step that means the coordinates of the corners and the algorithm defined.
The coordinates of the beginning and end of each edge along with its number are stored and maintained in the edge matrix in the Excel file format. In the stage of identifying the polygons, the polygons are formed by joining the edges together. This matrix is a special matrix that its matrix matrices are matrix itself. The matrix of polygons is a row matrix; whose number is the number of discontinuities. Because, as it mentioned in the chapter of the algorithm, the polygons are found by separation of discontinuities. Therefore, each column of the polygons matrix is consisting of faces that are on a certain discontinuity.
The next step begins the process of identifying the blocks, or the same polygons by the program. At this step, the program starts the identification process using the features found in the previous step and the algorithm defined for it. At this stage, the identified blocks are stored in the blocks matrix. By identifying blocks, the program calculates the volume of each block and finally draw its volume histogram. In fact, a volume histogram is presented to illustrate how the block volume is distributed. Obtaining the distribution of blocks or, in other words, achieving a block probability distribution function is an essential step in the behavior of rock mass. Because one of the most important consequences of the presence of discontinuities is the fragmentation of the rock material under the block intervals. By having the block distribution function, it is possible to produce a blockbuster method using random methods, such as Monte Carlo, and to analyze it in various and arbitrary modes.
Conclusion
To identify and study the rocky blocks created by discontinuities, a hierarchical algorithm was designed and developed in MATLAB software. This algorithm identifies and records blocks, consisting of blocks, edges, and facets of the blocks forming components, including stone blocks. This algorithm, which is written for user-friendly ease with the use of graphical coding capabilities, shows a very fast performance using the parallel computing power of MATLAB software. The developed code calculates the dip and dip direction of discontinuities using the geometric properties, and calculates the blocks created in three dimensions and calculates their volume. This histogram code displays the calculated volumes.
The results show that the developed code with its fast performance, while identifying the blocks, calculates and records their volumes without errors. The ability to display the step-by-step process of identifying blocks is one of the clear features of this code. Information about edge is also records and is available for auxiliary applications. Histogram of block volume is one of the most important results of the developed code, which can have different applications.
Identification of created rocky blocks is used both in the stability analysis and rock mass simulations such as Discrete Fracture Network modeling. Determination of block volume distribution function which is done using histogram is one of the most important uncertainties in three-dimensional rock masses behavior that can play a key role in optimizing the design of structures involved in rock mass. Therefore, considering the key role of blocks volume, identifying and calculating block volumes and, consequently, plotting their histogram and determining the distribution function governing them, has a key role in the static and dynamic analysis of rock base structures. ./files/site1/files/123/1Extended_Abstract.pdf
Hadiseh Mansouri1, Rassoul Ajalloeian, Alireza Nadimi,
Volume 13, Issue 3 (11-2019)
Abstract

Introduction                               
Generally, in engineering geology physical and mechanical properties of rocks are investigated in macroscopic scale, and less attention is paid to investigate the texture and microstructure developing in rock during deformation. Salt rock, as a best example of ductile rocks, has attracted the attention of many researchers. Compared to silicate rocks, salt rock exhibits extensively ductile behavior at even low temperature and pressure. In micro-tectonics, salt is important, because of it is useful as an analogue material for understanding the microstructural processes and textural development in silicate rocks. Deformed salt rock can display microstructures developed in silicate rocks at high pressures and temperatures. Regarding the similarity between microstructures of salt rock and silicate rocks, investigation of microstructure and deformation mechanism in salt rock can be helpful in understanding the main cause of the squeezing phenomenon in tunnels.
One of the effective factors on squeezing phenomenon is the structures and microstructures of rock. Rock mass classifications that contain rock mass structures are used in the predicting methods. But, so far, no attention has been paid to the role of rock microstructure in predicting the squeezing phenomenon.
This study is aimed to identify deformation mechanisms occurring in microscopic scale in rocks and lead to tunnel convergent in large scale. To achieve this goal, the microstructures in a naturally deformed Late Pre-Cambrian to Early Cambrian Hormuz salt rock from the active Deh Kuyeh salt fountain in Fars province were investigated using Electron Backscatter Diffraction (EBSD).
Materials and Methods
Deh Kuyeh salt diapir was located at about 27 km NE of Lar city. Salt samples were taken from top of the east and west glaciers (S1 and S2) and from the middle part of diapiric stem (sample S3). Raw samples were first cut dry into slabs (approximately 3´2 ´1 cm). Thin sections were prepared following the procedure of Schleder and Urai (2005) and Urai et al. (1987).
Halite crystallographic orientation data were collected using a Zeiss SIGMAVP FEGSEM. EBSD patterns were collected using an accelerating voltage of 30 kV, beam current of ~ 100 nA and a working distance of about 30 mm. Oxford instruments AZTEC software was used for data acquisition. EBSD large step size (50 mm) mapping was used to examine the overall microstructure in each sample. EBSD data were processed using HKL Channel 5 software.
Results and Discussion
All samples showed relatively similar microstructures. Samples comprise a small number of large grains in a matrix of smaller grains. Most grains were irregular in shape with lobate boundaries and internal distortion. Microstructural study revealed that the ductile flow of the salt was accommodated by dislocation creep and dynamic recrystallization. Salt grains show lattice distortion and a prevalence of low-angle boundaries that are evidence for dislocation creep and recovery processes. Misorientation analysis suggests that (110) <110> and (111) <110> slip systems are responsible for crystal plastic deformation of salt grains. Schmid factor analysis showed that stresses acting on inclined directions lead to the maximum activity of these slip systems.
The observed microstructures in the salt are comparable with the microstructures presented for schist samples from Himalaya region. The rock along Himalaya main trusts also showed evidence of dislocation creep and development of crystallographic preferred orientation. Hence, this article suggests that the rock type and its microstructures are the most important factors in occurrence of tunnel convergent.
Conclusions
This article proposes that deformation mechanisms occurring in micro-scale control the rock behavior in large scale. All rocks can behave as a ductile material depending on the temperature and pressure. In intrinsically ductile rocks like salt rock, presence of many active slip systems facilitates rock deformation under lower pressures and temperatures than silicate rocks. High tectonic stresses in shear zones lead to development of a strong shape preferred orientation and crystal preferred orientation in rocks. These microstructures facilitate rock deformation under stresses exiting in tunnels. It can be said that rock type and tectonic history of the area play the most important role in occurrence of squeezing phenomenon. Other factors such as current stress system in the area control deformation speed in tunnel. It seems investigating microstructures of rocks from tunnel route before and after excavation can be effective in identifying places with high possibility of squeezing.
Ali M Rajabi, Alireza Sajdeh,
Volume 13, Issue 4 (12-2019)
Abstract

Introduction
Concrete faced rockfill dams have been considered in recent years more than other types of dams due to their low dependency on the bed and the shape of the valley, as well as the simpler construction technology. In this regard, rockfill dams are a suitable substitute for embankment dams because of higher stability of the body and the availability of rock aggregates. On the other hand, because the permeability of rock aggregates is much higher than other materials, different methods are used to seal these types of dams. One of these methods is the use of non-impermeable concrete facing in the upstream of these dams. This particular type of gravel dams is called Concrete-Faced Rockfill Dams (CRFD). In this study, a contact element with a definition of elastic-plastic failure in the modeling process is proposed to simulate the surface separation and re-contact of the concrete face with the rockfill surface of the dam.
Method
In this paper, behavior of a concrete faced rockfill dam under earthquake loads is investigated. For this purpose, near-field earthquake records with focal depth lower than 15 km (for example Tabas earthquake 1978, M=7.4, and San Fernando earthquake 1970, M=6.6) are used. Moreover, to study the dam behavior under dynamic loads, interaction between concrete face and rockfill part of the dam is investigated and finally, some parameters including displacement, absorbed energy and base shear are evaluated. So, finite element method and Abaqus software is used for the study. Verification of the models is carried out using the results of previous researches by conducting modal analysis and determining natural vibration period. Then, the interaction between the concrete face and rockfill part as well as the effect of water level changes in stability of dam under dynamic load is investigated. Concrete behavior is simulated using concrete damaged plasticity. Therefore, concrete density, compressive strength and tensile strength and elasticity modulus are 2350 kg/m3, 25 MPa, 3 MPa and 29 GPa, respectively. Poisson’s ratio is assumed to be 0.2. Furthermore, 4-node shell elements are used to simulate concrete face and Drucker-Prager constitutive model is used to define rockfill material behavior.
The density and Poisson’s ratio for 2B, 3C and 3B layers are 2150 kg/m3 and 0.35, respectively. The shear modulus values for these layers are respectively 8.93, 2.89, and 3.85 GPa. In order to perform the simulation, the part of the dam structure beside the bed rock and the surrounding rock is considered as fixed bearing, and only the rockfill part and concrete face of the dam is simulated. Based on this assumption that the bed is rigid, there is no need to consider the dam foundation. This method is frequently used in literature review.
All the surfaces of the dam and bed rock are considered as fixed bearing to simulate the real condition where the dam is attached to bed rock and the surrounding rock. The interaction between dam layers is defined as tie. For defining the interaction between rockfill body and concrete face, tangential and normal contacts are defined using penalty method with friction coefficient equal to 0.5. In the next step, the model is meshed using 4-node shell elements for concrete face, 8-node brick and 4-node pyramid solid elements for rockfill body. Rayleigh damping is used to simulate the structure damping. The effective length of the dam reservoir has been determined by conducting several analyzes, so that the minimum required length for reservoir is reached in order to decrease the number of elements of the model.
Results and discussion
1. Interaction between concrete face and rockfill body
The results show that the increase of friction coefficient between concrete face and rockfill part from 0.5 to 0.7 has not affect the displacement of dam crown along the earthquake direction. However, when the concrete face is fixed to the rockfill part, significant changes are induced in dam crown displacement time history. In all cases, the deflection due to the dam weight is increased when the concrete face is attached to the rockfill body. The reason can be attributed to the tied interaction between these layers which results in similar deflection of concrete face with rockfill body and higher deflection of concrete dam crown. However, after the application of earthquake load, the displacement of the dam crown decreased in both analyses when tie interaction is defined between concrete face and rockfill body. In this study, due to the very high volume of analysis and its timeliness, it was not possible to examine the dam behavior in the free vibration regime, and therefore, it is not possible to assume the last displacement values at the end of analyses as the permanent displacement of dam. Figure 1 shows the relative displacement of the dam for the two selected earthquakes with a friction coefficient equal to 0.5 between the concrete face and the gravel body. According to Figure 1, the maximum displacement induced by the earthquake is related to Tabas and then, San Francisco earthquake. Furthermore, the high energy content of the Tabas record has been more effective in inducing greater displacement than the other record.
 
Figure 1. Lateral displacement of dam crown relative to the dam base for the selected earthquakes; Tabas and San Fernando.
The results also indicate that when the friction coefficient between concrete face and rockfill body is 0.5, the lowest damage occurs in the dam compared to that happens when friction coefficient is 0.7 or when the surfaces are tied. When the tied surfaces are used, the most damages takes place in concrete face, since all rockfill body displacement transmits to concrete face which results in much more concrete damages compared to the other interaction cases.
2. Effect of water level in reservoir on dam behavior
In this section, the effect of water level on seismic behavior of dam is investigated. For this purpose, the dam reservoir is analyzed in three cases including empty, half full and full (90% of dam height). Each study cases are examined under San Fernando and Tabas earthquakes. Figure 2 shows the relative displacement of dam crown in the three water level case for San Fernando and Tabas earthquakes.
 
Figure 2. Relative displacement of dam crown in three water level cases of empty, half and full for (a) Tabas and (b) San Fernando earthquakes
According to Figure 2, for both earthquakes, the dam crown displacement along the earthquake direction is significantly increased by increasing the water level, so that the maximum displacement in full case is 50% higher than empty case.
Conclusion
In this study, using the finite element method and simulation by Abaqus, the seismic behavior of concrete face rockfill dams has been investigated. For this purpose, the verification is firstly carried out using previous research results in literature. In the next step, nonlinear dynamical analysis is carried out, taking into account large displacements for the models under the earthquake record acceleration. The results illustrate that increasing the friction coefficient between the concrete face and the rockfill body from 0.5 to 0.7 has no significant effect on the displacement of the dam crown under earthquake load. Moreover, by using tie interaction between the concrete layer and the rockfill body, there is a substantial difference in the history of the relative displacement of the dam, and the displacement of the dam due to its weight has been increased. Furthermore, the results of this study exhibit that, with increasing the water level in dam reservoir, the deformation of the crown of the dam along the earthquake application direction has had a relatively significant increase, such that in the full state, the maximum displacement is increased by about 50% compared to that of the empty case. This is while the most damage of concrete is observed in the case when half height of dam in filled by water. Due to the more destructive power of near-field earthquakes and their impact nature, only near-fault earthquakes have been used in this research. Therefore, the results of this study are valid only for the behavior of dam under near-field earthquakes.
./files/site1/files/134/3.pdf
Javad Akbardoost, Jamal Bidadi,
Volume 14, Issue 2 (8-2020)
Abstract

Introduction
Rock masses have an enormous geometrical discontinuities such as void, notch, crack and flaw. These geometrical discontinuities which play as stress concentrator, cause to reduce the load bearing capacity of rock masses. In rock masses, the crack is the most important geometrical discontinuity assessed frequently by civil, mechanical and mining engineers and researcher. The fracture mechanics which is a branch of mechanical engineering science, has been often used for investigating the cracked rock samples. The fracture toughness is one of the important parameters in the fracture mechanics which describes the resistance of materials against the crack growth. On the other hand, since orientation of cracks relative to the loading directions can be arbitrary, brittle fracture in rocks may happen due to a combination of two major fracture modes, i.e. crack opening mode (mode I) and crack sliding mode without any opening or closing the crack flanks (mode II). In order to obtain the fracture toughness of rocks, several test configurations under pure mode I have been proposed. One of the parameters that has the influence on the fracture toughness of rocks and other materials is the thickness of test sample. Previous experimental results showed that the fracture toughness of rocks increases by increasing the specimen thickness until a specific thickness. After that, the fracture toughness decreases for thicker samples until plane strain condition occurs. Then, the fracture toughness becomes a fixed value when the thickness of sample varies.
The all preceding studies have been dealt with considering the effect of specimen thickness on fracture toughness focusing only the mode I fracture toughness and there is few research concerning the thickness effect on the mode II fracture toughness of rocks. Therefore, the aim of this paper is to investigate experimentally the effect of specimen thickness on the mode II fracture toughness.
Material and methods
To investigate the thickness effect on the mode II fracture toughness of rocks, several fracture tests were conducted on the semi-circular bend (SCB) specimens. The SCB specimen is a semi-disk of radius R and thickness t including an edge crack of length a loaded under three-point bending. When the crack is along the applied load and the bottom supports are symmetric relative to vertical crack, the SCB sample is under pure mode I loading. One of the methods for achieving the mixed mode loading in SCB sample is the asymmetry distances of bottom supports from the vertical crack located at the middle of bottom edge (see Figure 1). The pure mode II in this type of SCB sample is attained at a specific distances, i.e. at specific values of S1 and S2. These values of supporting distance can be obtained from finite element analysis.

Figure 1. The schematic of SCB sample.
The fracture tests were done both on pure mode I and pure mode II, for the sake of comprehensiveness. Therefore, 32 SCB samples with 4 different thicknesses and 4 repetition for each specimen size were tested for both pure mode I and pure mode II. The specimens were cut from Ghorveh marble sheets with different thicknesses by water jet machine. Then, the specimens were cracked artificially by a high speed rotary diamond saw blade. The specimen dimensions and loading conditions are presented in Table 1. Finally, the cracked SCB samples were tested by using a 300 kN ball-screw universal test machine. Table 1 also gives the average of four fracture loads (Pf) obtained for each thickness of specimen.
Table 1. The specimen dimensions and loading conditions.
  S.D.  (N) Pf  (N) S2 (mm) S1 (mm) a (mm) t (mm) R (mm)
Pure mode I 150 3220 57 57 28.5 15 95
Pure mode II 350 4726 11 57
Pure mode I 360 6711 57 57 28.5 25 95
Pure mode II 882 9445 11 57
Pure mode I 1450 20285 57 57 28.5 50 95
Pure mode II 4179 25441 11 57
Pure mode I 4672 31810 57 57 28.5 80 95
Pure mode II 4686 36848 11 57
Results and discussion
The mode I and mode II fracture toughness (KIc and KIIc) can be calculated for SCB samples from following equations:
(1)
(2)
where Pf is fracture load, R and t are the radius and thickness of SCB sample, respectively KI* and KII* are geometry factors which depend on geometrical ratios a/R, S1/R and S2/R and independent of specimen dimensions and magnitude of applied load. These dimensionless parameters are often obtained from finite element analysis. For tested SCB samples, the values of KI* and KII* were extracted from previous studies as shown in Table 2. Substituting the fracture loads and specimen dimensions from Table 1 and the values of KI* and KII* given in Table 2 into Eqs. (1) and (2), the mode I and mode II fracture toughness were calculated as listed in Table 2. Figure 2 also shows the variations of mode I and mode II fracture toughness with respect to specimen thickness. As seen from this figure, the fracture toughness for both pure modes increases for thicker samples until a specific thickness. After that, the values of KIc and KIIc decrease by increasing the specimen thickness. For plane strain condition in which the thickness of specimen is relatively large, the values of KIc and KIIc are nearly constant.
 
 
Table 2. The dimensionless parameters KI* and KII* for tested SCB samples and their corresponding fracture toughness.
  KIIc (MPa.√m) KIc (MPa.√m) KII* KI* t R
Pure mode I 0.0 1.125 0.0 0.644 15 95
Pure mode II 0.897 0.0 0.35 0.0
Pure mode I 0.0 1.411 0.0 0.644 25 95
Pure mode II 1.075 0.0 0.35 0.0
Pure mode I 0.0 2.126 0.0 0.644 50 95
Pure mode II 1.448 0.0 0.35 0.0
Pure mode I 0.0 2.083 0.0 0.644 80 95
Pure mode II 1.311 0.0 0.35 0.0
The other point assessed in the present study is the dependency of fracture path on specimen thickness in mode II loading. It was shown that the fracture trajectory becomes more curvilinearly when the thickness of specimen increases.

Figure 2. The variations of KIc and KIIc versus the specimen thickness.
Conclusion
The effect of specimen thickness on the mode I and mode II fracture toughness of rock was investigated experimentally using the SCB specimens. The experimental results showed that the fracture toughness for both pure modes increases when the thickness of specimen increases until a specific thickness. After that, the values of KIc and KIIc decrease by increasing the specimen thickness. For plane strain condition in which the thickness of specimen is relatively large, the values of KIc and KIIc are nearly constant. Also, it is shown the crack grows more curvilinearly for thicker SCB samples../files/site1/files/142/1.pdf
 
Mehdi Zamani, Ali Nikjoo,
Volume 14, Issue 5 (12-2020)
Abstract

A jointed rock mass presents a more complex design problem than the other rock masses. The complexity arises from the number (greater than two) of joint sets which define the degree of discontinuity of medium.  The condition that arises in these types of rock masses is the generation of discrete rock blocks, of various geometries. They defined by the natural fracture surfaces and the excavation surface. Stability problems in blocky jointed rock are generally associated with gravity falls of blocks from the roof and sidewalls. Whereas for block defined in the crown of tunnel,the requirement is to examine the potential for displacement of each block under the influence of the surface tractions arising from the local stress field and the gravitational load, in this paper various types of wedge formation in the crown of tunnel due to intersection of joint sets with various dip were examined. The state of stability of the wedge was then assessed through the factor of safety against roof failure. Following that the formed wedges in New York city and Washington D.C tunnels crown were investigated with limiting equilibrium analytical method and by use of Hoek and Brown failure criterion. The obtained results from analytical method corresponded with field observation.
 

Page 1 from 2    
First
Previous
1
 

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb