Search published articles


Showing 9 results for Slope


Volume 3, Issue 2 (4-2010)
Abstract

(Paper pages 649-676) Engineering characteristics of alluvium and cemented materials of the slopes around the Milad Tower, and the results of slopes stability analyses under static condition is presented in this paper. Also in the paper, the feasibility of developing and using artificial neural networks (ANNS) for slope stability prediction is investigated. According to the geometry of slopes and strength and deformation properties of alluviums, factor of safety is calculated in 2D and 3D by PLAXIS7.2 and PLAXIS 3D Tunnel codes, respectively, and the results are also compared. In addition, stability of slopes is investigated through the use of MLP artificial neural networks (ANNs), which developed in MATLAB environment. The database used for development of the model comprises a series of 252 factor of safety for different slopes conditions (2D, 3D, flatted and 18 inclined from horizon at top of cut). The optimal ANN architecture (hidden nodes, transfer functions and training) is obtained by a trial-and-error approach in accordance to error indexes and real data. The input data for slope stability estimation consist of values of geotechnical and geometrical input parameters. As an output, the network estimates the factor of safety (FoS). The results indicate that the ANN model is able to accurately predict the FoS of the slopes.
Hossein Soltani-Jigheh, Naser Shirdel,
Volume 7, Issue 2 (3-2014)
Abstract

A slope overlooking conveyor-belt system in Sungun copper mine complex has been downfall in 2006 and the buildings located on the upper part of the slope has been moved and destructed. Since the conveyor-belt system is an important part of the production process that transports excavated material from original stock to the rock-crusher equipment and to have continuous and firm production in the mining process, this slope must be stable during exploitation period safely. For this purpose, in this paper, first the structural and engineering geology of the area was studied and then the stability risk analysis is performed on the slope. According to the results of the stability analyses, the slope may be unstable against slip and probable instability may lead to damage or destroy conveyor-belt and its tunnel. Therefore, considering technical and cost conditions, slope geometry modification method with incorporation of the other methods are suggested to stabilization of the part of slope above conveyer belt. In addition, in the part of slope under conveyor-belt it is suggested to use other slope stabilization methods
Ali Attarzadeh, Ali Ghanbari, Amir Hamidi,
Volume 9, Issue 1 (6-2015)
Abstract

The objective of this paper is to investigate the bearing capacity of strip foundations next to sand slope. A series of laboratory model tests has been carried out and a new correlation coefficient to estimate the bearing capacity of shallow foundations near slopes is presented. The sand layers were prepared in a steel test tank with inside dimensions 500 ´ 200´ 250 mm. After vertical loading, the applied load and displacement of foundation were recorded and stress-settlement curve is drawn. Finally, the load at which the shear failure of the soil occurs is recorded as ultimate bearing capacity of foundation. The test sand used in this study was Babolsar sand with relative density of 50%. The relative performance of different distance of foundation from the edge of slope and inclination angle of slope are compared using same quantity of soil properties in each test. The results indicate that with increasing distance from the edge of the slope, bearing capacity increases linearly. Also with increasing slope angle, the bearing capacity has declined linearly
Azam Masoodi, Mohammad Reza Majdzadeh Tabatabi, Ali Noorzad,
Volume 10, Issue 2 (11-2016)
Abstract

Subsurface flow contributes considerably to river flow and plays an important role in river sediment loads. This research has been focused on investigation of soil properties and bankstream slope on seepage erosion. For this purpose a series of lysimeter experiments were performed for four different slopes of bankstream by varying the soil grain sizes. The obtained results indicate that Reynolds number in porous medium plays an effective role in depth of scour hole in noncohesive layer. It was observed that the time of beginning of sediment motion decreases with an increase in the soil grain size.


, ,
Volume 10, Issue 3 (2-2017)
Abstract

Komrud village of located on the slope is particularly susceptible to landslides. The slope stability analysis is of special importance because of landslides or slope failures can cause major damages life and financial. In studies to determine the factors and parameters affecting the slope is unstable. According to studies, one of the most important factor affecting landslides in this area is the force exerted by the acceleration of the earthquake. With this approach, the maximum possible acceleration of earthquakes in a 50-year period is estimated at the site. On the other hand, based on studies of the geological is determined profile of the slope geometry, physical and resistance parameters to the landslide susceptible. Then using the modeling software in FLAC 2D 5.00 elasto-plastic structural models, with failure criteria Mohr – Coulomb, stress-strain behavior of the soil has been examined to pseudo-dynamic method. A base position at the top of the slope is considered and displacement it horizontally to reach the maximum possible acceleration is calculated and recorded. The results of this study indicate that Horizontal displacement followed the landslide, can be occur below the maximum acceleration estimates.


A Erfani , A Ghanbari , A Massumi ,
Volume 10, Issue 5 (7-2016)
Abstract

Previous earthquakes have shown that topographic irregularities have significant impacts on the site seismic response and increasing structural damage by amplifying seismic responses. Studies on seismic behavior of slope topographic have shown that dynamic response of free field and soil-structure system is severely on the influence of topography shape and soil properties. Angle and height of slope, frequency of excitation, nonlinear behavior of soil and depth of bedrock are other parameters that affect on the response of the entire system. Furthermore the studies have shown that presence of structure adjacent to slope is very effective on variation of seismic behavior pattern of this topography but these studies are very limited. In this study the effect of existing structure adjacent to slope to seismic behavior pattern of slope topography have been investigated. The parameters that have studied in this article comprise slope angle and frequency content of excitation. The results show that the presence of structure adjacent to the slope, causes an increase to the response of free field and transmitting maximum response to distance away from structure position.


Erfan Naderi, Adel Asakereh, Masoud Dehghani,
Volume 13, Issue 2 (8-2019)
Abstract

Introduction
Bearing capacity is very important in geotechnical engineering, which depends on factors such as footing shape, stress distribution under footing and failure mechanism of soil. Construction of the footing near a slope affects the behavior of footing and reduces the bearing capacity. Also, construction of structures on soft soil usually involves problems such as excessive settlement, deformation and stability problems. In order to increase the bearing capacity, especially in soft soils, one method is adding stone columns to soils. In this method 15 to 35 percent of unsuitable soil volume is replaced with appropriate material. In this research, the bearing capacity and settlement of a strip footing on a clayey slope reinforced with stone columns is investigated. For this purpose, a series of small-scale model tests was performed on the slope reinforced with both types of ordinary and vertical encased stone columns. The effects of length of stone column and location of stone column on the behavior of footing was studied and the optimum length of column and best location for column were determined. Also, some tests were performed on the effect of group stone columns on the footing and the efficiency of columns was investigated.
Material and methods
In order to determine properties of clay soil, stone column and encasement material, some preliminary standard tests were performed. The stone column material was selected with aggregate size ranging from 2-10 mm considering the scale effect. The performance of stone column depends on the lateral confinement provided from the surrounding soil and this lateral confinement represents undrained shear strength of the soil. In very soft soils (cu<15 kPa), the lateral confinement is not adequate and the stone column cannot perform well in carrying the required bearing capacity. For this reason, a series of undrained shear strength standard tests were carried out on clay samples with different water contents. According to these tests, the amount of water content of clay related to cu-15kPa was equal to 25%; while the natural water content of the clay was 4%. Therefore, the additional amount of water was weighted and added to clay. The apparatus of this research was consisted of two main parts including a test box and a hydraulic loading system. The test box dimensions should be such that for all states of the tests, the stress in the soil applied from the loading would be almost zero at all boundaries of the box. Thus, a box was built to accommodate the clay slope with 150 cm×120 cm×30 cm dimensions. The test box was built using steel material and steel belts were welded around it to prevent the deformation at high loads. The front side of the box was made from two pieces of tempered glass and a 10 cm×10 cm grid was drawn on them, for making the slope during construction and observation of deformations during the loading easier. The model strip footing dimensions were 29 cm length, 10cm width and 4cm height and it was made from steel to have no deformation during the loading. The displacement of the footing was measured using two dial gauges with accuracy of 0.01 mm.
The clay was filled in the test box in 5 cm thick layers and compacted with a special 6.8 kg weight tamper. All model stone columns were constructed using the replacement method. In this method, a 10 cm diameter open ended steel pipe was inserted into the soil and the clay within the pipe was excavated. Then the stone column material charged into the hole in 5 cm layers and each layer was compacted using a 2.7 kg special circular steel tamper with 10 blows. The 5cm compactions were repeated until the construction of ordinary stone column was completed. For construction of vertical encased stone columns, the cylindrical encasement mesh should be constructed first. Then, after excavating the hole, the prepared encasement mesh was placed inside the hole and the aggregates were charged into the hole in 5 cm layers and compacted.
Results and discussion
The loading method used in all tests was a stress control method. Bearing capacity values were determined from pressure-displacement diagrams using tangent method. All test results show that when any type of stone columns was added to slope, the bearing capacity of adjacent footing was increased. Vertical encasing of stone columns leads to a further improvement in the behavior of the footing. Influence of length of ordinary stone columns on the behavior of strip footing near clayey slope, was studied for four different lengths. Results show that, the optimum length of stone columns giving the maximum performance is about 4 times their diameter. Also, the location of column for both ordinary and vertical encased stone columns was studied using a series of laboratory tests and results show that the best location for the stone column is right beneath the footing. Also, group stone column tests resulted that for both ordinary and vertical encased types of stone columns, the group of two columns had a better efficiency than the group of three columns.
Conclusion
In this investigation, some model tests with 1/10 model scale on a strip footing near a clayey slope reinforced with stone columns were performed and the effects of different parameters such as stone column length and location were studied. Based on results from experiments on different states of stone columns, the following concluding remarks may be mentioned:
- The maximum encasement influence was observed when the encased stone column is placed under the footing.
- The optimum length of ordinary stone columns which are placed beneath the strip footing gives the maximum performance more than 4 times to their diameter.
-Bulging failure mode governs when the stone column is placed under the footing. When stone column is not beneath the footing, the failure mode was lateral deformation.
- Comparing the different locations of stone columns in the slope shows that for both ordinary and vertical encased stone columns, the best location having the most influence on the strip footing is under the footing and with increasing the spacing between column and footing, the bearing capacity is reduced.
./files/site1/files/132/7Extended_Abstracts.pdf
Mohammad Mahdi Aminpour1, Mohammad Maleki,
Volume 14, Issue 1 (5-2020)
Abstract

Introduction
Studying the effect of slope angle on bearing capacity of foundations on the slope in urban areas is a challenging problem that has been investigated by researchers for years. In general, the analytical approaches for solving this problem can be categorized into limit equilibrium, characteristics and limit analysis methods. In recent years, there have been studies for using the limit analysis within the framework of finite element method for geomaterials. In these studies, the soil mass is not considered as rigid and there is no need to predefine a failure surface for the slope. In the performed research, using the upper bound finite element limit analysis, bearing capacity of strip foundation on slope have been studied. This analytical method enables the use of the advantages of both methods of limit analysis and finite element analysis. In this method, the slip between the two elements is considered. In order to find the critical state of the failure, the rate of power internally dissipated is linearly optimized, by using the interior points method. The advantages of this method are the high convergence rate in comparison with other analytical optimization methods. The effect of different upstream and downstream slopes and foundation depths and also the influence of various mesh discretizations have been evaluated. Finally, the results are compared with those obtained from previous methods available in the literature.
Methods
The finite element limit analysis method is based on nodal velocities. Considering the principals of the finite element method and having the nodal velocities, the velocity at each node of the element can be obtained from corresponding shape functions. The rate of power internally dissipated in each element is defined by multiplying the strain rate on stress in each element. In this method, the slip between the two elements and the rate of internal power dissipated at each discontinuity of two adjacent elements is considered. For this purpose, in each node, four new unknowns’ velocities are defined. To remove the stress from the equations, and provide a linear relationship for linear optimization, a linear approximation to the yield function has been used. For this purpose, the Mohr-Coulomb yield criterion is estimated with a polygon in the stress space. Also, using the reduced strength parameter, the effect of the dilation angle is considered. According to the principles of upper bound limit analysis, the value of plastic strain rate is calculated from the flow rule. The velocity field in elements and discontinuities must satisfy the set of constraints imposed by an associated flow rule. In order to have an acceptable kinematics field, the velocity vectors have to satisfy the boundary conditions. These conditions include zero kinematics velocities along the vertical and horizontal boundaries of the geometry as well as negative vertical unit velocities and zero horizontal velocities at points underneath the rigid foundation.
Results and discussion
In order to calculate the bearing capacity of foundation, a set of different uniform and non-uniform mesh has been examined. The results obtained from different uniform mesh sizes indicate a certain divergence in the course of analysis. However, the results between the fine and very fine non-uniform mesh are closely related to each other and are converged. The obtained results show that, by increasing the internal friction angle, the bearing capacity has been increased. At high angles of modified friction, the effect of increasing the internal friction angle on the increase in bearing capacity is more in slopes with lower angles. By increasing the downstream foundation depth, the bearing capacity has been increased. This increase is more important in the case of slopes with lower angles. However, the upstream depth variations didn't present a significant effete on bearing capacity. In order to investigate the effect of upstream angle on the bearing capacity, the upstream mesh is also refined similar to the downstream. The obtained results indicate that variations of the upstream angle have a minor effect on the bearing capacity. This is of course true if the upstream slope is fully stable. The results of the proposed method in this study are an upper bound for the results reported by the limit equilibrium and displacement finite element methods. As seen in Figure 1, the suggested method predicts lower bearing capacities compared to rigid block limit analysis method and is indeed a lower bound for the classical limit analysis method. The finite element limit analysis with linear optimization has resulted in more bearing capacity than cone optimization. The bearing capacities, obtained from characteristic lines method depending to the slope angles, in some cases is more and in some cases less than those explored by the proposed method.
In this paper, the bearing capacity of foundation located on slope was evaluated by finite element limit analysis method. In this regard, the effects of different downstream and upstream angles of slope and foundation depths and also, the effect of various mesh discretizations on the bearing capacity were studied. It is shown that an increase in the downstream angle causes a decrease in the bearing capacity and an increase in the downstream foundation depth leads to an increase in the bearing capacity.  However, the upstream angle and upstream foundation depth were not much effective on the bearing capacity.
 
Mr. Seyed Ali Ghaffari, Prof. Amir Hamidi, Dr. Gholamhossein Tavakoli Mehrjardi,
Volume 14, Issue 5 (12-2020)
Abstract

This paper investigates response of triangular shell strip footings situated on the sandy slope. A series of reduced-scale plate load tests were conducted to cover different parameters including three shell footing types with different apex angles in addition to a flat footing, four different distances for strip footings from the crest of the slope namely “edge distance” and reinforcement status (unreinforced and geotextile-reinforced statuses). Bearing capacity of shell footings adjacent to crest of the slope, bearing capacity ratio, shell efficiency factor, influence of apex angle on settlement of footings and the mechanism of slope failure are discussed and evaluated. Also, empirical equations for determination of the maximum bearing capacity of triangular shell strip footings are suggested. As a whole, it has been observed that decrease of shell’s apex angle as good as increase of edge distance could significantly improve the bearing capacity. However, as the edge distance increases, the effect of apex angle on the bearing capacity got decreased. Also, it was found out that the beneficial effect of reinforcement on the bearing capacity decreased with increase of the edge distance. Furthermore, the efficiency of shell footings on bearing capacity was attenuated in reinforced slopes compared to the unreinforced status.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb