Soil nailing is a prevalent method for temporary or permanent stabilization of excavations which, if it is used for permanent purposes, the seismic study of these structures is important. There are a few physical models, with limited information available, for the study of behavior of soil nailed walls under earthquake loading. Numerical methods may be used for the study of effects of various parameters on the performance of soil nailed walls, and this technique has been used in the current paper. In this research, the effects of various parameters such as the spacing, configuration, and lengths of nails, and the height of wall on seismic displacement of soil nailed walls under the various earthquake excitations were studied. To investigate the effects of the configuration and the lengths of nails on the performance of these structures, two configurations of uniform and variable lengths of nails have been used. To study the effects of the spacing between nails and the height of the wall the spacings of 2 and 1.5 meters and the heights of 14, 20, and 26 meters have been considered. The seismic analysis has been carried out using the finite element software Plaxis 2D. To analyze the lengths' of nails, it was assumed that the safety factors of stability of different models are constant, and the limit equilibrium software GeoSlope was used. After specification of the lengths of nails based on constant safety factor of stability, the deformations of the models under several earthquakes records were analyzed, and recommendations were made on minimizing the deformations of soil nailed walls under seismic loading.
Evaluation of the excavation-induced ground movements is an important design aspect of supporting system in urban areas. This evaluation process is more critical to the old buildings or sensitive structures which exist in the excavation-affected zone. Frame distortion and crack generation are predictor, of building damage resulted from excavation-induced ground movements, which pose challenges to projects involving deep excavations. Geological and geotechnical conditions of excavation area have significant effects on excavation-induced ground movements and the related damages. In some cases, excavation area may be located in the jointed or weathered rocks. Under such conditions, the geological properties of supported ground become more noticeable due to the discontinuities and anisotropic effects. This paper is aimed to study the performance of excavation walls supported by nails in jointed rocks medium. The performance of nailed wall is investigated based on evaluating the excavation-induced ground movements and damage levels of structures in the excavation-affected zone. For this purpose, a set of calibrated 2D finite element models are developed by taking into account the nail-rock-structure interactions, the anisotropic properties of jointed rock, and the staged construction process using ABAQUS software. The results highlight the effects of different parameters such as joint inclinations, anisotropy of rocks and nail inclinations on deformation parameters of excavation wall supported by nails, and induced damage in the structures adjacent to the excavation area. The results also show the relationship between excavation-induced deformation and the level of damage in the adjacent structure.
One of the effective parameters in the dynamic behavior of reinforced soil walls is the fundamental vibration frequency. In this paper, analytical expressions for the first three natural frequencies of a geosynthetic reinforced soil wall are obtained in the 3D domain, using plate vibration theory and the energy method. The interaction between reinforced soil and the wall is also considered by modeling the soil and the reinforcement as axial springs. The in-depth transverse vibration mode-shapes, which were impossible to analyze via 2D modeling, are also analyzed by employing plate vibration theory. Different behaviors of soil and reinforcements in tension and compression are also considered for the first time in a 3D analytical investigation to achieve a more realistic result. The effect of different parameters on the natural frequencies of geosynthetic reinforced soil walls are investigated, including the soil to reinforcement stiffness ratio, reinforcement to wall stiffness ratio, reinforcement length, backfill width and length to height ratio of the wall, using the proposed analytical expressions. Finally, the results obtained from the analytical expressions proposed are compared with results from the finite element software Abaqus and other researchers’ results, showing that the proposed method has high accuracy. The proposed method will be a beginning of the 3D analytical modeling of reinforced soil walls.
Page 1 from 1 |
© 2025 CC BY-NC 4.0 | Journal of Engineering Geology
Designed & Developed by : Yektaweb