Search published articles


Showing 2 results for Water Content

Vahid Taebi, M Hajisotodeh, Ar Mahbobi Ardakani,
Volume 9, Issue 1 (6-2015)
Abstract

One of the most useful procedures in soil stabilization is lime. Soil improvement using lime is a quick and simple approach which could be included in large and small projects. The objective of soil ‘Improvement’ with quicklime is to achieve an immediate reaction, which significantly strengthens the soil due to the removal of moisture and a chemical change in clays. In order to do a parametric study on the influence of the lime on shear strength preparing the samples is important. In this paper, in addition to considering a method of samples preparation, the effect of lime content, water content and processing time on the shear strength of clay using direct shear test is investigated. The results indicate that the method of samples preparation is effective and is identified that there is an optimum lime and moisture content which maximize shear strength.
Hadi Atapour, , ,
Volume 10, Issue 3 (2-2017)
Abstract

The Schmidt hammer provides a quick and inexpensive measure of surface hardness that is widely used for estimating the mechanical properties of rock material such as uniaxial compressive strength and Young’s modulus. On the other hand, Schmidt rebound hardness can be used for a variety of specific applications. In the mining industries, it is used to determine the quality of rock, which is common practice when constructing rock structures such as those found in long wall mining, room and pillar mining, open-pit mining, gate roadways, tunnels, dams, etc. However, a number of issues such as specimen dimensions, water content, hammer type, surface roughness, weathering, testing, data reduction and analysis procedures continue to influence the consistency and reliability of the Schmidt hammer test results. This paper presents: a) a critical review of these basic issues and b) avaluate the effect of temperature, moisture and uniaxial compressive stress on Schmidt hammer hardness. It was found that water content has a significant effect on the Schmidt rebound hardness (SRH) of rocks. So that increase of water content substantially reduced the SRH of samples. Temperature also had a considerable influence on the SRH. However, relationship between SRH decreases with increasing temperature for tested samples were linear. Also tests results showed that uniaxial loading of samples increases the SRH values.



Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb