3 نتیجه برای شبکۀ عصبی
جلد 4، شماره 2 - ( 12-1389 )
چکیده
تحلیل تراکم حاصل شده از عملیات تراکم در خاکهای ریزدانه در تحلیل برگشتی اهمیت بهسزایی دارد. روش متداول در محاسبۀ درصد تراکم خاک؛ شیوههای معمول مانند روش مخروط ماسه، روش بالون لاستیکی و روش چگالیسنج هستهای است. که بهعنوان روشی مناسب جایگزین، شبکۀ عصبی آموزش دیده شده بر مبنای الگوهای تحلیل شده است. با روشهای مذکور محاسبۀ تراکم، علاوه بر این که به دقت مورد نیاز در روشهای مرسوم میرسد، سادگی و سهولت استفاده از آن از سایر روشها بیشتر بوده و سرعت محاسبۀ آن نیز بیشتر است. در این تحقیق مدلی مبتنی بر شبکۀ عصبی چندلایه پرسپترون برای پیشبینی رفتار تراکمی خاکهای ریزدانه در سد مخزنی سرابی در حین اجرا، و متراکم کردن لایههای خاک ارائه شد. متغیرهای ورودی شامل4 پارامتر ژئوتکنیکی رطوبت بهینه، درصد عبوری از الک200، حد روانی و حد خمیری و 4 پارامتر اجرایی تعداد دفعات عبور غلتک، ضخامت لایه، رطوبت خاک در محل و دانسیتۀ حاصل شده در محل، در نظر گرفته شد. ایـن مدل که مبتنی بر شبـکۀ عصبی چنـد لایه با رویکرد پسانتشار خطا ارائه شده، قادر است بدون داشتن حداکثر دانسیتۀ آزمایشگاه که از ملزومات حتمی محاسبۀ درصد تراکم در حالت معمولی است؛ با استفاده از دیگر پارامترهای ژئوتکنیکی و اجرایی (8 مورد اشاره شده) درصد تراکم و بالطبع حداکثر وزن مخصوص آزمایشگاه را با تقریب نزدیک به 100 درصد محاسبه کند.
حمید مهرنهاد، مهدی خلق ذکرآباد،
جلد 12، شماره 5 - ( 10-1397 )
چکیده
هنگام حفر تونل در فضاهای شهری، جلوگیری از آسیب و تخریب سازههای مجاور اهمیت ویژهای دارد. برای کاهش این آسیبها باید از نشست سطحی زمین جلوگیری کرد. در سالهای اخیر بررسیهای گستردهای در زمینۀ پیشبینی نشست سطحی زمین در اثر حفر تونل انجام شده است. انتخاب روش مناسب به عوامل مختلفی بستگی دارد. نشست سطحی ناشی از حفر تونل با کمک متغیرهای ورودی که تأثیر فیزیکی چشمگیری بر نشست دارند، پیشبینی شده است. برای ساخت مدل شبکههای عصبی از دادههای بهدست آمده از حفر تونل خط 2 متروی مشهد استفاده شده است. نتایج نشان داد که شبکه عصبی پیشخور که با استفاده از الگوریتم پس انتشار خطا آموزش دیده است و دارای سه لایه با معماری 1-24-7 است، شبکۀ عصبی بهینه ایت. شبکۀ عصبی بهینه دارای ضریب همبستگی و میانگین مربعات خطا برابر با 963/0 و 4-10×41/2 است. همچنین نتایج نشان داد که این شبکۀ عصبی آموزش دیده شده میتواند برای پیشبینی نشست سطحی ناشی از حفر تونل بهصورت موفقیتآمیزی استفاده شود.
احسان امجدی، غلامحسین اوکلیمهرجردی،
جلد 13، شماره 5 - ( 10-1398 )
چکیده
این مقاله مدلی از شبکۀ عصبی پس انتشار را برای پیشبینی (گویی) مقاومت کششی باقیمانده و چارت طراحی بهمنظور برآورد (تخمین) ضرایب کاهش مقاومت ژئوتکستایلهای بافته نشده که تحت فرآیند نصب قرار گرفته اند، ارائه میکند. 34 داده از تست های برجای مقیاس کامل برای آموزش، صحتسنجی و آزمایش شبکه عصبی ایجاد شده (توسعه یافته) و مدل رگرسیونی استفاده شده است. نتایج نشان می دهد که، پیشبینی مقاومت کششی باقیمانده با استفاده از شبکۀ عصبی آموزش داده شده، تطابق خوبی با نتایج آزمایشگاهی دارد. پیشبینی های بهدست آمده از شبکۀ عصبی بسیار بهتر از مدل رگرسیونی هستند، بهطوریکه درصد خطای حداکثر داده های آموزش داده شده برای شبکه عصبی و مدل رگرسیونی بهترتیب کمتر از 87/0 درصد و 92/18 درصد است. بر اساس شبکۀ عصبی توسعه یافته، یک چارت طراحی ایجاد شده است. بهطورکلی، ضرائب کاهش مقاومت ژئوتکستایل ها ناشی از خرابی نصب هنگامی که عملیات تراکم در شرایطی اعم از مقاومت کشش چنگکی نمونه پیش از نصب کمتر، تنش اعمالی روی ژئوتکستایل بیشتر، مصالح خاکریز با اندازۀ دانه بزرگ تر، تراکم نسبی مصالح خاکریز بیشتر و بستر ضعیف تر انجام میشود، افزایش می یابد.