جستجو در مقالات منتشر شده


5 نتیجه برای پیش‌بینی


جلد 3، شماره 1 - ( 6-1388 )
چکیده

برآورد ویژگی‌های هیدروژئولوژیکی تودهٔ سنگ و پیش‌بینی میزان جریان آب از بحث‌های حیاتی و جدی در مهندسی سنگ به‌شمار می‌‌رود. از آن‌جا که در تودهٔ سنگ‌های درز و شکاف‌دار ناپیوستگی‌ها مسیرهای اصلی جریان آب را به‌وجود می‌‌آورند، مشخصات آن‌ها تأثیر چشم‌گیری بر آب‌گذری خواهد داشت. با وجود تحقیقات فراوان هنوز روش مناسبی که رابطه مشخصی بین همه پارامترها و میزان ‌آب‌گذری برقرار کند وجود ندارد. امروزه شبکه‌های عصبی ابزار قدرتمندی برای حل مسائل پیچیده از قبیل پیش‌بینی، تشخیص الگو و طبقه‌بندی انواع متغیرها هستند. در این تحقیق به کمک نوعی شبکهٔ عصبی مصنوعی، رفتار و مقدار ‌‌آب‌گذری تودهٔ سنگ‌های گرانودیوریتی ساختگاه سد شور-جیرفت از روی برخی وی‍ژگی ناپیوستگی‌ها از جمله شاخص کیفی سنگ، فراوانی درزه‌ها، بازشدگی، چگالی وزنی درزه، زون‌های خرد شده و عمق پیش‌بینی شده است. رابطهٔ این پارامتر‌ها با آب‌گذری با روش آماری رگرسیون چند متغیره نیز بررسی شده است. داده‌های به‌کار رفته در آموزش و آزمایش این شبکهٔ عصبی شامل نتایج مربوط به 304 آزمایش لوژن در تودهٔ سنگ‌های گرانودیوریتی ساخت‌گاه سد شور-جیرفت است. شبکهٔ عصبی پرسپترون چندلایه با قاعده پس انتشار خطا با الگوریتم آموزش Levenberg-Marquardt در این تحقیق استفاده شده است. این بررسی‌های نشان می‌دهد که شبکهٔ عصبی مصنوعی از توانایی فراوانی در حل چنین مسائلی برخوردار است.
حسین اینانلو عربی شاد، غلامرضا لشکری پور، .مجید اکبری،
جلد 5، شماره 2 - ( 11-1390 )
چکیده

امروزه ماشین‎های تونل‎بری TBM‎ (Tunnel Boring Machine) بطور وسیعی در حفر تونل‎ها بخصوص تونل‎های شهری استفاده می‎شوند. این ماشین‎ها بر اساس روش نگهداری سینه‌کار و دیواره‌های تونل، دارای انواع مختلفی می‌باشند. یکی از انواع این ماشین‌ها، سپرهای تعادلی فشار زمین EPB (Earth Pressure Balance) می‌باشد که جهت حفاری خط 1 متروی تبریز مورد استفاده قرار گرفته است. عوامل مختلفی نظیر شرایط زمین‎شناسی، خصوصیات توده سنگ، شیب مسیر و همچنین مشخصات ماشین بکار رفته بر میزان کارآیی این ماشین‎ها تأثیر می‎گذارد. یکی از راههای پیش‎بینی میزان کارآیی این ماشین‎ها، تخمین نرخ نفوذ آنها می‎باشد. در این تحقیق میزان نرخ نفوذ TBM در خط 1 متروی تبریز توسط شبکه عصبی مصنوعی پیش‌بینی گردیده است. پیش‌بینی این پارامتر، کمک شایانی در انجام مراقبت و دقت بیشتر در برخورد با مناطق دردسرساز با دانستن زمان برخورد به این مناطق و همچنین استفاده از فشار EPB مناسب در آنها می‌نماید. از نتایج مهم حاصل از این تحقیق می‌توان به پیش‌بینی میزان نرخ نفوذ با دقت قابل قبول و همچنین تعیین پارامترهای مؤثر به وسیله آنالیز حساسیت صورت گرفته توسط شبکه عصبی اشاره کرد.
حمید مهرنهاد، مهدی خلق ذکرآباد،
جلد 12، شماره 5 - ( 10-1397 )
چکیده

هنگام حفر تونل در فضاهای شهری، جلوگیری از آسیب و تخریب سازه­های مجاور اهمیت ویژه‌ای دارد. برای کاهش این آسیب­ها باید از نشست سطحی زمین جلوگیری کرد. در سال­های اخیر بررسی‌های گسترده­ای در زمینۀ پیش­بینی نشست سطحی زمین در اثر حفر تونل انجام شده است. انتخاب روش مناسب به عوامل مختلفی بستگی دارد. نشست سطحی ناشی از حفر تونل با کمک متغیرهای ورودی که تأثیر فیزیکی چشم‌گیری بر نشست دارند، پیش­بینی شده است. برای ساخت مدل­ شبکه­های عصبی از داده­های به­دست آمده از حفر تونل خط 2 متروی مشهد استفاده شده است. نتایج نشان داد که شبکه عصبی پیش­خور که با استفاده از الگوریتم پس انتشار خطا آموزش دیده است و دارای سه لایه با معماری 1-24-7 است، شبکۀ عصبی بهینه ایت. شبکۀ عصبی بهینه دارای ضریب هم‌بستگی و میانگین مربعات خطا برابر با 963/0 و 4-10×41/2 است. هم‌چنین نتایج نشان داد که این شبکۀ عصبی آموزش دیده شده می­تواند برای پیش­بینی نشست سطحی ناشی از حفر تونل به­صورت موفقیت­آمیزی استفاده شود. 
دکتر سید نصراله افتخاری، دکتر ساسان معتقد، دکتر لطف اله عمادعلی، دکتر هادی صیادپور،
جلد 16، شماره 2 - ( 6-1401 )
چکیده

روابط پیش‌­بینی حرکت زمین سهم مهمی در تغییر‌پذیری نتایج تحلیل خطر دارند. انتخاب روابط پیش‌بینی مناسب برای منطقه می‌تواند به پایداری و دقت نتایج تحلیل خطر زلزله منجر شود. دراین مطالعه، روابط پیش‌بینی مختلف با امکان استفاده برای تحلیل خطر لرزه‌ای شهر اهواز مورد بررسی و تحلیل قرار گرفته‌­اند. این روابط بر اساس معیارهای لگاریتم درست‌نمایی، فاصله اقلیدسی و معیار اطلاع انحراف در دوره تناوب‌های مختلف رتبه‌بندی شدند. سپس با توجه به اختلاف نتایج حاصله، از روش تحلیل پوششی داده‌ها برای تصمیم‌گیری نهایی در مورد کارآمدترین روابط استفاده شده است. نتایج حاصله از میان 67 رابطه ممکن، 5 رابطه را به عنوان روابط مناسب جهت انجام تحلیل خطر لرزه‌ای در محدوده شهر اهواز شناسایی نمود. سپس از معیار ویژه کارآیی برای تعیین وزن این روابط استفاده گردید. نتایج این مطالعه می تواند تا حدود زیادی به کاهش عدم‌قطعیت در فرآیند تحلیل خطر لرزه‌ای منطقه مورد مطالعه کمک کند.
 

دکتر محمد فتح اللهی، آقای حبیب رحیمی منبر، دکتر غلامرضا شعاعی،
جلد 16، شماره 3 - ( 9-1401 )
چکیده

پارامترهای مقاومت برشی، پارامترهای مهمی برای ارزیابی پایداری سازه‌های مهندسی هستند که محاسبه آن‌ها با روش‌های مرسوم نیازمند هزینه و زمان زیادی می‌باشد. در این پژوهش با استفاده از آزمایش‌های اولیه‌ ژئوتکنیک مانند دانه‌بندی، حدود آتربرگ و آزمایش تک‌محوره و به کارگیری هوش مصنوعی، بدون انجام تست‌های پیچیده‌تر، زاویه اصطکاک داخلی و چسبندگی خاک محاسبه شد. به این منظور از نمونه‌های دست‌نخورده از ۱۴ گمانه در بندرعباس که بر روی آن‌ها آزمایش‌های اولیه‌ی ژئوتکنیک و برش مستقیم انجام گرفته بود، انتخاب‌ و برای آموزش شبکه‌ی عصبی استفاده شدند. در این پژوهش تعداد ۱۹۵ شبکه در حالت‌های مختلف آموزش داده شد. به منظور دستیابی به بهترین عملکرد، شبکه‌های عصبی پیش‌خور ابتدا در حالت تک لایه و دو لایه با تعداد نورون‌های لایه میانی پایین آموزش داده شدند و تابع TRAIN BR به دلیل بالا بودن نسبت  R (R=0/97) انتخاب و سپس با افزودن لایه‌های میانی به ۳، ۴ و ۵ لایه با تعداد نورون‌های لایه میانی (۵۰، ۴۰، ۳۰، ۲۰ و ۱۰) نورون شبکه‌های عصبی آموزش داده شدند. نتایج نشان داد شبکه‌ی MLP چهار لایه بهترین نتایج را نشان می‌دهد، برای این حالت R آموزش ۱، R تست 0/90 و  R کل 0/98 می‌باشد. در نهایت به منظور صحت‌سنجی شبکه‌ی عصبی، تعداد ۱۵ نمونه انتخاب و پارامترهای ورودی شبکه در حالات بهینه ۲، ۳ و ۴ لایه آموزش داده و خروجی شبکه ارزیابی شد. برای پیش‌بینی چسبندگی، شبکه عصبی در حالت 4 لایه (0/99 =R2)  و برای زاویه اصطکاک، شبکه‌های ۲، ۳ و ۴ لایه (0/99 =R2) بهترین خروجی را داشتند.
 


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به نشریه زمین شناسی مهندسی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb