1. Allen, D. H. (1991). Economic evaluation of projects: A guide. Warwickshire: Institution of Chemical Engineers.
2. Amiri, M., Mashatzadeghan, H, Aziz Mohammadi, R., Yaghoubi, A. (2009). Introducing a heuristic algorithm for project scheduling problems whit the object of maximizing the net present value in the absence of resource constraints. Sharif Journal of Industrial Engineering & Management. 24(45), 23- 29 [Persian].
3. Chazagi, J., Ekhtesais, M., Maleki Nezhad, H., Nakhaei. M. (2016). Economic Evaluation of Underground Dams in Sandarak Minab Area. 11th National Conference on Watershed Management Science and Engineering of Iran [Persian].
4. Ganji, M., Alinaghian, M., Sajjadi, S. (2016). A New Model for Optimizing Simultaneously Projects Selection and Resource- Constrained Project Scheduling Problem with particle swarm optimization. Journal of Production and Operations Management, 7(1), 235-246 [Persian].
5. Ghazvine, S., Belali, H. (2013). Economic Investigation of Investment in some Selected Country Industries Using the Approach of Engineering Economics (Case Study: Hamedan City).4th Regional Conference on Challenges and Development Strategies in Deprived Areas [Persian].
6. Hamzepour, M., Sadr, S., Kafaee, M. (2002). Reforming The Corporate Tax System In IRAN According to an Islamic Tax Model. Iranian Journal of Economic research, 4(10), 13-39 [Persian].
7. Hesami azizi, B., Yaghubian kafshgari, A. (2016). Khoums and Zakat and its place in the economy of Islamic countries. Journal of Human Sciences Research. 2(2), 123- 146 [Persian].
8. Huang. X., (2007). Optimal project selection with random fuzzy parameters. International Journal of Production Economics, 106(2), 513-522. [
DOI:10.1016/j.ijpe.2006.06.011]
9. Iqbal, M., Khan, T. (2012). Financial Engineering and Islamic Contracts. Ghasemi, P., Gheshlaghchi, A. Tehran: Islamic Parliament Research Center Of The Islamic Republic Of IRAN.
10. Jafarizadeh, B., Ramazani Khorshid-Doust R., (2008). A method of project selection based on capital asset pricing theories in a framework of mean-semideviation behavior. International Journal of Project Management, 26, 612-619. [
DOI:10.1016/j.ijproman.2007.09.004]
11. Jiang JJ, Klein G. (1999). Information system project-selection criteria variations within strategic classes. IEEE Transactions on engineering management. 46(2):171- 176. [
DOI:10.1109/17.759145]
12. Javadi Amoli, A., (2015). Tuzih Olmasayel. Qom. Esra [Persian].
13. Machacha, L., Bhattacharya, P., (2000). A fuzzy-logic-based approach to project selection. IEEE Transactions on engineering management. 47(1):65-73. [
DOI:10.1109/17.820726]
14. Osborne, M., (2010). A resolution to the NPV-IRR debate?. The Quarterly Review of Economics and Finance, 50(2), 234-239. [
DOI:10.1016/j.qref.2010.01.002]
15. Oskunejad, M., (1996). Engineering Economy, Economic Evaluation of Engineering Projects. Tehran: Amir Kabir [Persian].
16. Ringuest, J.L., Graves, S.B.., (1990). The linear R&D project selection problem: an alternative to net present value. IEEE Transactions on engineering management. 37(2), 143-146. [
DOI:10.1109/17.53718]
17. Sayadi, A., Ataei, M., Hassanzadeh, A., D, D., Sayadi, A. (2012). Optimization of mine production rate using conditional NPV maximization. Iranian Journal of Mining Engineering, 7(15), 87-96 [Persian]
18. Shahanaghi, K., Jabbarzadeh, A., Hamidi, M., Ghodoosi, M., (2012). Selecting the Most Economic Project under Uncertainty Using Bootstrap Technique and Fuzzy Simulation. Iranian Journal of Management Studies (IJMS), 5(1), 9-24.
19. Tari, F., Jafari, S. (2015). The Impact of Khoums on Consumption and Investment: an Implication of Kaldor Model. Economics Research, 14(55), 137-156 [Persian].
20. Ye. S., Tiong. R., (2000). NPV-at-Risk Method in Infrastructure Project Investment Evaluation. Journal of Construction Engineering and Management, 126(3), 227-233. [
DOI:10.1061/(ASCE)0733-9364(2000)126:3(227)]
21. Zanakis, S.H., Mandakovic, T., Gupta, S.K., Sahay, S., Hong, S. (1995). A review of program evaluation and fund allocation methods within the service and government sectors. Socioeconomic Planning Sciences, 29 (1), 59-79. [
DOI:10.1016/0038-0121(95)98607-W]