1. Bakirtas, I., Bayrak, S., & Cetin, A. (2014). Economic growth and carbon emission: A dynamic panel data analysis. European Journal of Sustainable Development, 3(4), 91-102. [
DOI:10.14207/ejsd.2014.v3n4p91]
2. Belke, A., Dreger, Ch., Haan, F., (2010), Energy Consumption and Economic Growth -New Insights into the Cointegration Relationship, Ruhr Economic Papers, (190). [
DOI:10.2139/ssrn.1635765]
3. Dinda. S., & Coondo. D. (2006), Income and emission: a panel data-based cointagration analysis. Ecological Economics, (57), 167-181. [
DOI:10.1016/j.ecolecon.2005.03.028]
4. Du, K. (2018). Econometric convergence test and club clustering using Stata. The Stata Journal, 17(4), 882-900. [
DOI:10.1177/1536867X1801700407]
5. ESSO, J.L. (2010), The Energy Consumption-Growth Nexus in Seven Sub-Saharan African Countries,, Issue 2,(30), 1191-1209.
6. Huang, B., Hwang, M.J., Yang, C.W., (2008), Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach, Ecological Economics, (67), 41-54. [
DOI:10.1016/j.ecolecon.2007.11.006]
7. Husson, F., Josse, J., & Pagѐs. J. (2010). Principal component methods-hierarchical clustering-partitional clustering: why would we need to choose for visualizing data?, Agrocampus, 1.
8. KALANTARI, K. 2003. Data Processing and Analysis in Socio-Economic Research. Sharif Publication, Tehran.[Persian]
9. Kapetanios, G. (2005). Cluster Analysis of Panel Datasets using Non-Standard Optimisation of Information Criteria. Queen Mary, University of London, (535).
10. Lee, C. & Chang, C. (2007), Energy consumption and economic growth in Asian countries: A more comprehensive analysis using panel data, Resource and Energy Economics. [
DOI:10.1016/j.reseneeco.2007.03.003]
11. Liao, N., & He, Y. (2018). Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model. Energy, 158, 782-795. [
DOI:10.1016/j.energy.2018.06.049]
12. Mahdavi G, Majed V.(2011). The impact of Socio-Economic and Psychological Factors on Life Insurance Demand in Iran. JEMR. 2 (5) :21-46. .[Persian]
13. McNeish, D., & Kelley, K. (2018). Fixed effects models versus mixed effects models for clustered data: Reviewing the approaches, disentangling the differences, and making recommendations. Psychological methods. [
DOI:10.1037/met0000182]
14. Pao. H. T., & Tsai. C. M. (2010), "CO2 emissions, energy consumption and economic growth in BRIC countries". Energy Policy, (38), 7850-7860. [
DOI:10.1016/j.enpol.2010.08.045]
15. Pourkazemi, M., & Ebrahimi, I. (2008). Evaluation of environmental Kuznets curve in the Middle East. Journal of Economic Research, 34, 57-71.[Persian]
16. Rafat M. (2019). The Application of Complex Networks Analysis to Assess Iran's Trade and It's Most Important Trading Partners in Asia. JEMR. 9 (34) :107-137. .[Persian]
17. Squalli, J. (2006), Electricity consumption and economic growth: Bounds and causality analyses of OPEC members, Energy economics. [
DOI:10.1016/j.eneco.2006.10.001]
18. Stolyarova, E. (2013). "Carbon Dioxide Emissions, economic growth andenergy mix: empirical evidence from 93 countries". Climate Economics Chair.
19. Wolde-Rufael, Y. (2006), Electricity consumption and economic growth: a time series experience for 17 African countries, Energy Policy, (34), 1106-1114. [
DOI:10.1016/j.enpol.2004.10.008]
20. Wooldrige, M. (2006). CLUSTER-SAMPLE METHODS IN APPLIED ECONOMETRICS: AN EXTENDED ANALYSIS. Michigan State University. (517) 353-5972.
21. www.bp.com. Statistical Review of World Energy (2016)
22. www.eia.gov. (2016)
23. www.worldbank.org. World Development Indicator (2016)