دوره 11، شماره 39 - ( 1-1399 )                   سال11 شماره 39 صفحات 80-45 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jalili Kamju S P, Khochiani R. Application of the Bankruptcy Theory and Conflicting Claims on Water Resources Allocation of Zayanderud. jemr 2020; 11 (39) :45-80
URL: http://jemr.khu.ac.ir/article-1-1826-fa.html
جلیلی کامجو سید پرویز، خوچیانی رامین. کاربرد تئوری ورشکستگی و تقاضاهای ناسازگار در حل مناقشه تخصیص منابع آب زاینده‌رود. تحقیقات مدلسازی اقتصادی. 1399; 11 (39) :45-80

URL: http://jemr.khu.ac.ir/article-1-1826-fa.html


1- دانشگاه آیت ا.. بروجردی (ره) ، parviz.jalili@gmail.com
2- دانشگاه آیت ا... بروجردی (ره)
چکیده:   (6348 مشاهده)
حل تقابل آب و تخصیص بهینه منابع مشترک آب، مهم‌ترین خدمت نظریه بازی‌های با رویکرد مشارکتی به اقتصاد آب است. حوضه آب‌ریز زاینده‌رود مهم‌ترین حوضه مورد مناقشه در بین چند استان هم‌جوار در حوضه درجه یک فلات مرکزی ایران است. هدف این پژوهش استفاده از نظریه بازی‌های با کاربرد رویکرد ورشستگی (تقاضاهای ناسازگار) به منظور تخصیص بهینه منابع آب سطحی و زیرزمینی در حوضه آب‌ریز زاینده‌رود با درنظر گرفتن حق‌آبه زاینده‌رود (بخش گردشگری)، لحاظ آب انتقالی به یزد و کاشان و آب منتهی به تالاب گاوخونی در کنار تقاضای سه بخش شرب، صنعت-معدن و کشاورزی است. به منظور برآورد حق‌آبه طبیعی رودخانه و بخش گردشگری از روش مونتانا (تنانت) تحت سه سناریوی مختلف تنانت ضعیف، قابل قبول و بهینه در دوره 1361-1395 استفاده شد، که به ترتیب 7/77، 5/130 و 5/466 میلیون مترمکعب در سال برآورد شد. تئوری تقاضاهای ناسازگار در سناریوهای مختلف برای حق‌آبه زاینده‌رود ( بخش گردشگری) نشان داد در هر سه سناریو بر اساس پنج قانون مختلف در تئوری ورشکستگی شامل قانون نسبی PRO، قانون محدودیت برابر پاداش‌ها CEA، قانون محدودیت برابر زیان‌ها CEL، تالمود TAL و قانون ورود تصادفی RA، روش CEA مطلوب‌ترین روش برای 5 بخش (به جز بخش کشاورزی) بود. به منظور انتخاب روش عادلانه‌تر، از شاخص ضریب جینی و منحنی لورنز استفاده شد که نشان داد قانون CEA نسبت به سایر روش‌ها توزیع با نابرابری کمتری را دارد. به این ترتیب به دلیل شکاف فزاینده تقاضای در حوضه زاینده‌رود پیشنهاد شد تخصیص آب بر اساس قوانین تئوری ورشکستگی و تقاضاهای ناسازگار انجام یابد.
متن کامل [PDF 6299 kb]   (1707 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: انرژی، منابع و محیط زیست
دریافت: 1398/1/28 | پذیرش: 1399/1/22 | انتشار: 1399/4/31

فهرست منابع
1.  - Abdoli, Gh. (1395). Game theory and its applications (static and dynamic games with complete information), Jihad Daneshgahi Publications: 454. (In Persian)
2. Akbari, N., Niksokhan, M., Ardestani, M. (2014). Optimization of Water Allocation using Cooperative Game Theory Case Study: Zayandehrud Basin. Journal of Environmental Studies, 40(4), 875-889. doi: 10.22059/jes.2014.53004. (In Persian)
3. Ansink,E. 2009. Game-theoretic models of water allocation in transboundary river basins, Wageningen University.
4. Aumann RJ, Maschler M (1985). Game Theoretic Analysis of a bankruptcy from the Talmud." Journal of Economic Theory, 36, 195(213). [DOI:10.1016/0022-0531(85)90102-4]
5. Becker, N., Easter, K.W., (1995). Water diversions in the great lakes basin analyzed in a game theory framework. Water Resources Management 9 (3). [DOI:10.1007/BF00872130]
6. Cano-Berlanga, S., Gim'enez-G'omez, J.M., Vilella, C. (2017). Enjoying cooperative games:The R package GameTheory. Project ECO2011-22765. [DOI:10.1016/j.amc.2017.02.010]
7. Danesh yazdi, M., Abrishamchi, A., Tajrishy, M. (2014). Conflict Resolution of Water Resources Allocations Using the Game Theoretic Approach: The Case of Orumieh River Basin. Journal of Water and Wastewater; Ab va Fazilab ( in persian ), 25(2), 48-57. (In Persian)
8. DeCanio, S. J., & Fremstad, A. (2013). Game theory and climate diplomacy. Ecological Economics, 85, 177-187.‌ [DOI:10.1016/j.ecolecon.2011.04.016]
9. Dinar, A. )2004(. Exploring transboundary water conflict and cooperation. Water Recourses Research 40 (5), W05S01. doi:10.1029/2003WR002598. [DOI:10.1029/2003WR002598]
10. Dufournaud, C.M., 1982. On the mutually beneficial cooperative scheme: dynamic change in the payoff matrix of international river basin schemes. Water Resources Research 18 (4), 764-772. [DOI:10.1029/WR018i004p00764]
11. Elimam, L., Rheinheimer, D., Connell, C., Madani, K., (2008). An ancient struggle: a game theory approach to resolving the nile conflict. In: Babcock, R.W., Walton, R. (Eds.), Proceeding of the 2008 World Environmental and Water Resources Congress, Honolulu, Hawaii. American Society of Civil Engineers, pp. 1-10. [DOI:10.1061/40976(316)258]
12. Farhadi, S.; Nikoo, M.R.; Rakhshandehroo, G.R.; Akhbari, M; Alizadeh, M.R. (2016). An agent-based-nash modeling framework for sustainable groundwater management: A case study. Agric. Water Manag, 177, 348-358. [DOI:10.1016/j.agwat.2016.08.018]
13. Fernandez, L., (2009). Wastewater pollution abatement across an international border. Environment and Development Economics 14 (1), 67. [DOI:10.1017/S1355770X08004543]
14. Fisvold, G.B., Caswell, M.F., (2000). Transboundary water management: gametheoretic lessons for projects on the US-Mexico border. Agricultural Economics 24, 101-111. [DOI:10.1111/j.1574-0862.2000.tb00096.x]
15. Hajjian, N., Hajjian, P. (2013). Zayandeh Rood database, along with graphical analysis, ready for publication. (In Persian)
16. Han, Q., Tan, G., Fu, X., Mei, Y., & Yang, Z. (2018). Water resource optimal allocation based on multi-agent game theory of HanJiang river basin. Water, 10(9), 1184.‌ [DOI:10.3390/w10091184]
17. Iran Water Resources Management Company (2018). Daily reports of hydrometric stations and groundwater resources. (In Persian)
18. Jalili Kamjo, P. (2018). Assessing the Nonlinear Relationship between Water and Economic Growth in the Provinces of Iran: Application of SAR model, Quarterly Journal of Natural Environment, University of Tehran, in the print run of 2020. (In Persian)
19. jalili kamjoo, S., khoshakhlagh, R. (2016). Using the game theory in optimal allocation of water in Zayandehrud. Journal of Applied Economics Studies in Iran, 5(18), 53-80. doi: 10.22084/aes.2016.1494. (In Persian) [DOI:10.1016/j.jeem.2016.01.001]
20. Jalili Kamju, S. (2016). Application of Mechanism Design and Matching Theory to Water Market Design: An Institutional Approach. Journal of Economics and Modeling, 7(26), 121-158. (In Persian)
21. Jalili Kamju, S. (2018). Economic Value Evaluation of Underground Water Extract by Farmers. Environmental Researches, 9(17), 95-110. (In Persian)
22. Khochian, R., Jalili Kamjo, S. (2019). Evaluation of kernel Causality between Groundwater Extraction and Economic Growth: Application of Nadaraya-Watson kernel Regression Model. Irrigation and Water Engineering, 9(4), 147-159. doi: 10.22125/iwe.2019.90260. (In Persian)
23. Kicsiny, R., & Varga, Z. (2019). Differential game model with discretized solution for the use of limited water resources. Journal of Hydrology, 569, 637-646.‌ [DOI:10.1016/j.jhydrol.2018.12.029]
24. Kucukmehmetoglu, M. (2012). An integrative case study approach between game theory and Pareto frontier concepts for the trans boundary water resources allocations, Journal of Hydrology 450- 451(0): 308-319. [DOI:10.1016/j.jhydrol.2012.04.036]
25. Kucukmehmetoglu, M., Guldmen, J., (2004). International water resources allocation and conflicts: the case of the euphrates and tigris. Environment and Planning A, 36 (5): 783-801. [DOI:10.1068/a3670]
26. Liu, B., Huang, J. J., McBean, E., & Li, Y. (2020). Risk assessment of hybrid rain harvesting system and other small drinking water supply systems by game theory and fuzzy logic modeling. Science of The Total Environment, 708: 134-156. [DOI:10.1016/j.scitotenv.2019.134436]
27. Loaiciaga, H. (2004). Analytical game theoretic approach to groundwater extraction. Journal of Hydrology, 297: 22-33. [DOI:10.1016/j.jhydrol.2004.04.006]
28. Madani, K. & Hipel, W. (2011). Non-cooperative stability definitions for strategic analysis of generic water resources conflicts. Water resources management, 25(8):1949-1977. [DOI:10.1007/s11269-011-9783-4]
29. Madani, K. (2010). Game theory and water resources. Journal of Hydrology, 381: 25-38. [DOI:10.1016/j.jhydrol.2009.11.045]
30. Madani, K., Hipel, K.W., (2007). Strategic insights into the Jordan River conflict. In: Kabbes, K.C. (Ed.), Proceeding of the 2007 World Environmental and Water Resources Congress, Tampa, Florida. American Society of Civil Engineers, 1- 10. [DOI:10.1061/40927(243)213]
31. Madani, K.; Zarezadeh, M.; Morid, S. (2014). A new framework for resolving conflicts over transboundary rivers using bankruptcy methods. Hydrol. Earth Syst. Sci, 18, 3055-3068. [DOI:10.5194/hess-18-3055-2014]
32. Mahmoudinia D, Engwerda J, Dallali Esfahani R, Bakhshi Dastjerdi R, Fakhar M.(2016). Strategic Interaction Between Government and Central Bank in Framework of Cooperative and Non-Cooperative Games. jemr. 6 (24) :83-121. (In Persian) [DOI:10.18869/acadpub.jemr.6.24.83]
33. Mazandaranizade, H., Ghaheri, A., Abdoli, Gh.(2018). A conflict resolution model among municipal and agricultural users by game theory for sustainable operation of a common aquifer. Agricultural Economics and Development, 17(68), 77-102. .(In Persian)
34. Mirshafee, S., Ansari, H., Mianabadi, H. (2015). Bankruptcy Methods in Transboundary Rivers Allocation Problems Case study : (Atrak river). Iranian Journal of Irrigation & Drainage, 9(4), 594-604. (In Persian)
35. O'Neill B (1982). A problem of rights arbitration from the Talmud." Mathematical Social [DOI:10.1016/0165-4896(82)90029-4]
36. Sciences, 2(4), 345(371).
37. Office of Basic Studies of Water Resources (1397). Isfahan Regional Water Company. (In Persian)
38. Owen, G. (1995). Game theory, 3rd Edition, Academic Press, New York, NY, USA.
39. Pourkazemi, M.H., Valinejad, M. (2014). Application of Game Theory for Water Resources Management between Industry and Agriculture Sectors in Isfahan Province (The Case of: Zayande- Rud River), Journal of Economic Modeling Research, 4(15), 1-42. (In Persian)
40. Poursapahi, H., Karachian, R. (2010). Water allocation in common rivers: application of game theory, 6th National Congress of Civil Engineering, Semnan, Semnan University. (In Persian)
41. Pourzand, F., Zibaei, M. (2012). Application of game theory for the optimal groundwater extraction in Firozabad plain. Agricultural Economics, 5(4), 1-24. (In Persian)
42. Rahimi, M.A., Shurian, M., Noorzad, A. (2016). Water Resource Allocation Planning Using Game Theory Approach, 6th National Conference on Water Resources Management, Iran, Kurdistan, Kurdistan University. (In Persian)
43. Rathi, S., Ghavami, B. (2018). Comparison of the application of cooperative and non-cooperative approaches to game theory in order to resolve water resources disputes. Third National Conference on Conservation of Natural Resources and Environment. (In Persian)
44. Rogers, P. (1969). A game theory approach to the problems of international river basins. Water Resources Research, 5(4): 749-760. [DOI:10.1029/WR005i004p00749]
45. Safari, N., Zarghami, M. & Szidarovszky, F. (2014). Nash bargaining and leader-follower models in water allocation: Application to the Zarrinehrud River basin, Iran. Applied Mathematical Modeling, 38: 1959-1968. [DOI:10.1016/j.apm.2013.10.018]
46. Safavi, H., Rastghalam, M. (2017). Solution to the Water Crisis in the Zayandehrud River Basin; Joint Supply and Demand Management. Iran Water Resources Research, 12(4), 12-22. (In Persian)
47. Sheikhmohammady, M., Madani, K. (2010). Bargaining over the Caspian Sea-the largest Lake on the earth. In: Babcock, R.W., Walton, R. (Eds.), Proceeding of the 2008 World Environmental and Water Resources Congress, Honolulu, Hawaii. American Society of Civil Engineers, pp. 1-9. [DOI:10.1061/40976(316)262]
48. Shouke Wei, M.A. (2008). On the use of game theoretic models for water resources management, Brandenburg university of Technology in Cottbus, Ph.D. Thesis.
49. Siehlow, M., Reif, J., von Hirschhausen, C., Dreuse, A., Koschker, S., Schneider, S., & Werner, R. (2012). Using Methods of Cooperative Game Theory for Water Allocation Management in the Orange Senqu River Basin. In European Association of Environmental and Resource E-conomists 19th Annual Conference. Prague.‌
50. SobuhiM., & MojaradE. (2010). Application of Game Theory for Groundwater Resources Management of Atrak. Agricultural Economics & Development, 24(1). (In Persian)
51. Statistics Center of Iran (2018). Statistical yearbook of Isfahan province and Chaharmahal and Bakhtiari province. (In Persian)
52. Supalla, R., Klaus, B., Yeboah, O., Bruins, R. (2002). A game theory to deciding who will supply in stream flow water. American Water Resources Association 38 (4): 959-966. [DOI:10.1111/j.1752-1688.2002.tb05537.x]
53. Wang, L. (2007). Basin-wide cooperative water resources allocation, European Journal of Operational Research doi:10.1016/j.ejor.2007.06.045. [DOI:10.1016/j.ejor.2007.06.045]
54. Wang, L. Z., Fang, L. & Hipel, K. W. (2003). Water resources allocation: A cooperative game theoretic approach. Journal of Environmental Informatics 2 (2): 11-22. [DOI:10.3808/jei.200300019]
55. Zarezadeh, M., Madani, K., Morid, S. (2013). Resolving conflicts over trans-boundary rivers using bankruptcy methods. In: Hydrology and Earth System Sciences. Discuss. 10: 13855- 13887. [DOI:10.5194/hessd-10-13855-2013]
56. Zarghami, M., Safari, N. (2013). Optimum Water Allocation for Agricultural Section of Zarrinehrud River by Non-Symmetric Nash Modeling. Agricultural Economics, 7(2), 107-125. (In Persian)
57. Zeng, Y., Li, J., Cai, Y., Tan, Q., & Dai, C. (2019). A hybrid game theory and mathematical programming model for solving trans-boundary water conflicts. Journal of Hydrology, 570, 666-681.‌ [DOI:10.1016/j.jhydrol.2018.12.053]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به فصلنامه تحقیقات مدلسازی اقتصادی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Economic Modeling Research

Designed & Developed by : Yektaweb