1. Abdi, A. (2006). Examining the issues and problems of insured persons and the free and optional jobs in interaction with the social security organization. Social Security Quarterly, 8(1). 255-282. (In Persian)
2. Abdi, F., Khalili-Damghani, K., & Abolmakarem, S. (2017). Solving customer insurance coverage sales plan problem using a multi-stage data mining approach. Kybernetes.1, 2-19. [
DOI:10.1108/K-07-2017-0244]
3. Abdul-Rahman, S., Arifin, N. F. K., Hanafiah, M., & Mutalib, S. (2021). Customer Segmentation and Profiling for Life Insurance using K-Modes Clustering and Decision Tree Classifier. International Journal of Advanced Computer Science and Applications (IJACSA), 12(9) [
DOI:10.14569/IJACSA.2021.0120950]
4. Azzone, M.; Barucci, E.; Mancayo, G.G.; Marazzina, D. (2022). A Machine Learning Model for Lapse Prediction in Life Insurance Contracts. Expert Systems with Applications, 191. [
DOI:10.1016/j.eswa.2021.116261]
5. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining guide. SPSS inc, 9,13.
6. Chen, I. J., & Popovich, K. (2003). Understanding customer relationship management (CRM): People, process and technology. Business process management journal. 672-688. [
DOI:10.1108/14637150310496758]
7. Chen, Y., & Hu, L. (2005). Study on data mining application in CRM system based on insurance trade. In Proceedings of the 7th international conference on Electronic commerce. 839-841. [
DOI:10.1145/1089551.1089715]
8. Hurwitz, J., & Kirsch, D. (2018). Machine learning for dummies. IBM Limited Edition, 75. [
DOI:10.1201/9780429196645-6]
9. Hosseini, S. M. S., Maleki, A., & Gholamian, M. R. (2010). Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty. Expert Systems with Applications,37(7), 5259-5264. [
DOI:10.1016/j.eswa.2009.12.070]
10. Kracklauer, A. H., Mills, D. Q., & Seifert, D. (2004). Customer management as the origin of collaborative customer relationship management. In Collaborative Customer Relationship Management (pp.3-6). Springer, Berlin, Heidelberg [
DOI:10.1007/978-3-540-24710-4_1]
11. Khalili-Damghani, K., Abdi, F., & Abolmakarem, S. (2019). Solving customer insurance coverage recommendation problem using a two-stage clustering-classification model. International Journal of Management Science and Engineering Management, 14(1), 9-19. [
DOI:10.1080/17509653.2018.1467801]
12. Kong, H.; Yun, W.; Joo, W.; Kim, J.H.; Kim, K.K.; Moon, I.C.; & Kim, W.C. (2022). Constructing a personalized recommender system for life insurance products with machine-learning techniques. Intelligent Systems in Accounting, Finance and Management, 29 (4). 242-253. [
DOI:10.1002/isaf.1523]
13. Maimon, O. Z., & Rokach, L. (2014). Data mining with decision trees: theory and applications (Vol. 81). World scientific
14. Mau, S., Pletikosa, I., & Wagner, J. (2018). Forecasting the next likely purchase events of insurance customers: A case study on the value of data-rich multichannel environments. International Journal of Bank Marketing, 1123-1144. [
DOI:10.1108/IJBM-11-2016-0180]
15. Mollamohammadi, R., & Mostofi, M.R. (2014). The Factors Affecting the Success of the Social Security Organization in Paying Retirement Pension to Those Insured by Qom'First Branch of Social Security Organization. Organizational Culture Management, 12(2), 299-323. (In Persian)
16. Motdin, N.; Nazarian, R.; Daman-Ksheideh, M., & Seifipour, R. (2021). Designing a Comparative Model of Bank Credit Risk Using Neural Network Models, Survival Probability Function and Support Vector Machine. Journal of Economic Modeling Research, 11 (45), 199-230. (In Persian) [
DOI:10.52547/jemr.12.45.199]
17. Motafakkerazad, M.A.; & Ghafarnejad Mehraban, A. (2011). Intelligent Modeling of Asymmetric Effects of Monetary Shocks on Output in Iran(Neural Network Application). Journal of Economic Modeling Research, 2 (4), 83-102. (In Persian)
18. Najafi, A. (2019). Predictability of loyalty and separation of self-insurance Persons of Social Security Organization based on data mining method. Social Security Quarterly, 15(1). 88-109. (In Persian)
19. Ngai, E. W., Xiu, L., & Chau, D. C. (2009). Application of data mining techniques in customer relationship management: A literature review and classification. Expert systems with applications,36(2), 2592-2602. [
DOI:10.1016/j.eswa.2008.02.021]
20. Parmah, S.; Mardomdar, S., & Heidari, A. (2020). Macroeconomic Variables and Demand for Self-employment Insurance in the Social Security Organization. Social Security Quarterly, 16(1). 41-59. (In Persian)
21. Rahman, S., Arefin, K. Z., Masud, S., Sultana, S., & Rahman, R. M. (2017, April). Analyzing Life Insurance Data with Different Classification Techniques for Customers' Behavior Analysis. In Asian Conference on Intelligent Information and Database Systems.15-25. [
DOI:10.1007/978-3-319-56660-3_2]
22. Rygielski, C., Wang, J. C., & Yen, D. C. (2002). Data mining techniques for customer relationship management. Technology in society, 24(4), 483-502. [
DOI:10.1016/S0160-791X(02)00038-6]
23. Severino, Matheus Kempa, and Yaohao Peng. "Machine learning algorithms for fraud prediction in property insurance: Empirical evidence using real-world microdata." Machine Learning with Applications 5 (2021): 100074. [
DOI:10.1016/j.mlwa.2021.100074]
24. Shokohyar, S.; Rezaeian, A., & Boroufar, A. (2017). Identifying the customer behavior model in life insurance Sector using data mining. Management Research in Iran, 20(4). 65-94. (In Persian)
25. Sullivan, W. (2017). Machine Learning For Beginners Guide Algorithms: Supervised & Unsupervsied Learning. Decision Tree & Random Forest Introduction. Healthy Pragmatic Solutions Inc
26. Tanha, J., Van Someren, M., & Afsarmanesh, H. (2017). Semi-supervised self-training for decision tree classifiers. International Journal of Machine Learning and Cybernetics, 8(1), 355-370. [
DOI:10.1007/s13042-015-0328-7]
27. Wirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining. 29-40.