دوره 13، شماره 47 - ( 3-1401 )                   سال13 شماره 47 صفحات 114-73 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salek N, Khorsandi M. Designing a Oil Market Model and Comparing Crude Oil Price Forecasts. jemr 2022; 13 (47) :73-114
URL: http://jemr.khu.ac.ir/article-1-2282-fa.html
سالک نوید، خورسندی مرتضی. طراحی الگوی بازار نفت و مقایسه پیش‌بینی‌های قیمت نفت خام. تحقیقات مدلسازی اقتصادی. 1401; 13 (47) :73-114

URL: http://jemr.khu.ac.ir/article-1-2282-fa.html


1- دانشگاه علامه طباطبایی ، saleknavid@yahoo.com
2- دانشگاه علامه طباطبایی
چکیده:   (3418 مشاهده)
قیمت نفت خام از عوامل موثر بر شاخص‌های اقتصادی می‌باشد. از این‌رو پیش‌بینی قیمت نفت همواره مورد بحث اقتصاددانان بوده است. در این پژوهش به منظور پیش‌بینی قیمت نفت، بر اساس نظریه رقابتی مک اوی، تاثیر کلیه متغیرهای موثر بر عرضه و تقاضای نفت خام بررسی و با استفاده از سیستم معادلات همزمان و روش‌های آماری مرسوم، معادلات عرضه و تقاضا برآورد ‌گردید. سپس با فرض برابری عرضه و تقاضای نفت در بلندمدت، کشش‌های بلندمدت عرضه و تقاضای نفت نسبت به هریک از متغیرهای موجود در مدل استخراج گردید. محاسبات نشان داد بیشترین تاثیر بر قیمت نفت را تولید ناخالص داخلی جهان با کشش تقاضای 6039/0 و کمترین تاثیر را تنش‌های نظامی و امنیتی جهان با کشش تقاضای 0110/0- دارند. پس از برآورد الگو به مقایسه دقت پیش‌بینی سه روش تلفیقی شامل شبکه عصبی و سیستم معادلات همزمان، آریما و سیستم معادلات همزمان، شبکه عصبی و آریما و سیستم معادلات همزمان با روش‌های مرسوم و تک متغیره شبکه عصبی و آریما پرداخته شد. نتایج بیانگر آن بود که روش تلفیقی آریما و سیستم معادلات همزمان در پیش‌بینی 5 ساله و روش تلفیقی شبکه عصبی و آریما و سیستم معادلات همزمان در پیش‌بینی 10 ساله از قدرت پیش‌بینی‌کنندگی بهتری نسبت به روش‌های مرسوم و تک‌متغیره شبکه عصبی و آریما برخوردار می‌باشند.
متن کامل [PDF 809 kb]   (1447 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: انرژی، منابع و محیط زیست
دریافت: 1401/9/2 | پذیرش: 1402/1/15 | انتشار: 1402/2/23

فهرست منابع
1. Abasi Nami H (2021). Forecasting Crude Oil Prices Volatility and Value at Risk: Single and Switching Regime GARCH Models, Quarterly Energy Economics Review, 17 (68): 141-174 (In Persian)
2. Abrishami, H. Behradmehr, N. & seifi, T (2013). Forecasting of Crude Oil Price by Using Wavelet Transform, Non-Linear and Linear Models, Quarterly Journal of Applied Economics Studiesin Iran, 2(7): 41-62 (In Persian)
3. Abunoori, AA & khodadad, N (2012). Comparing the performance of ARIMA regression models and neural network with genetic algorithm (GMDH) in predicting the price of crude oil in Iran, Journal of Financial Engineering and Securities Management, 3(11): 43-62 (In Persian)
4. Ayazi, A. Amiri, M. Fartukzadeh, HR & Azar, A (2020). Strategic analysis of international oil market suppliers based on graph model, Scientific quarterly of interdisciplinary studies on strategic knowledge, 10(39): 179-206 (In Persian)
5. Baumeister, Christiane. & Lutz, Kilian. (2016). Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us. Translated by Mehrdad Rahmani and Ali Faridzad (2019). Trend Quarterly, 25 (83,84):131-168 (In Persian) [DOI:10.2139/ssrn.2734052]
6. Bordbar N, Heidari E (2017). The Effect of World Oil Price Fluctuations on the Return of the Energy Intensive Industries Stock in Iran, Journal of Economic Modeling Research, 8 (27):177-205 (In Persian) [DOI:10.29252/jemr.7.27.177]
7. Deng, C. Ma, L & Zeng, T (2021). Crude Oil Price Forecast Based on Deep Transfer Learning: Shanghai Crude Oil as an Example, MDPI, 13(24): 1-13. [DOI:10.3390/su132413770]
8. Ebrahimi, M. Hajimirzayi, MA. & Mohammadkhani, S (2011). Estimating Iran's crude oil supply pattern, Quarterly Energy Economics Review, 8(29): 113-137 (In Persian)
9. Emami meibodi A, memarzadeh A, amadeh H, ghasemi nejad A (2013). Comparing the performance of GARCH model and gravitational search algorithm (GSA) in modeling and forecasting of spot oil price of Iran, Journal of Economic Modeling Research, 4 (14):1-23 (In Persian)
10. Gojarati, D (1991). Basics of econometrics, Translated by Abrishami H (2008), Tehran: Tehran University Publications, The second volume
11. Gupta, N & Nigam, Sh (2020). Crude Oil Price Prediction using Artificial Neural Network, Procedia Computer Science, 170: 642-647 [DOI:10.1016/j.procs.2020.03.136]
12. Hajikaram, E & darabi, R (2017). Brent Crude Oil Daily Price Forecast by Combining Principal Components Analysis and Support Vector Regression methods, Iranian Energy Economics Research; 7(25):41-60 (In Persian)
13. HajiLari Semnani, B & Khalili, S (2018). Estimation of OPEC crude oil price using binomial tree, time series and artificial neural networks, Journal of Mineral Resources Engineering,3(3): 31-41 (In Persian)
14. Jammazi, R. & Aloui, C (2012). Crude Oil Price Forecasting: Experimental Evidence from Wavelet Decomposition and Neural Network Modeling, Energy Economics, 34(3):828-841 [DOI:10.1016/j.eneco.2011.07.018]
15. Li, X. He, K. Lai, K & Zou Y (2014). Forecasting Crude Oil Price With Multiscale Denoising Ensemble Model, Mathematic Problems in Engineering, (4): 1-9. [DOI:10.1155/2014/716571]
16. Menhaj, MB (1998). Basics of neural networks (computational intelligence), Tehran: Publication of Dr Hesabi (In Persian)
17. Mohammadi, H. & Lixian, Su (2010). International Evidence on Crude Oil Price Dynamics: Applications of ARIMA-GARCH Models, Energy Economics, 32(5): 1001-1008. [DOI:10.1016/j.eneco.2010.04.009]
18. Runfang, Y., Jiangze, D., Xiaoto, L. (2019). Improved Forecast Ability of Oil Market Volatility Based on combined Markov Switching and GARCHclass Model, Procedia Computer Science, 122: 415-422. [DOI:10.1016/j.procs.2017.11.388]
19. Souri, A (2017). Econometrics (Volume 1), Tehran: Cultural publication, Sixth edition (In Persian)
20. Sadeghi, H. Zolfaghari, M & Elhaminezhd, M (2011). Comparison of Neural Networks and ARIMA in Modeling and Forecasting of Short Run Pricing of the OPEC Crude Oil Basket (With Focus on Comparative Expectations), Quarterly Energy Economics Review, 8(28): 25-47 (In Persian)
21. Takroosta A, Mohajeri P, Mohammadi T, Shakeri A, Ghasemi A (2019). An Analysis of Oil Prices Considering the Political Risk of OPEC, Journal of Economic Modeling Research; 10 (37):105-138 (In Persian) [DOI:10.29252/jemr.10.37.105]
22. Wang, M. Tian, L. & Zhou, P (2018). A novel approach for oil price forecasting based on data fluctuation network, Energy Economic, 71:201-212 [DOI:10.1016/j.eneco.2018.02.021]
23. Yadegari H, Mohammadi T, Amadeh H, Qasemi A, Mostafaei H (2022). Brent crude oil Price Forecast with Hybrid Model of Nonlinear Grey Model and Linear Arima Waste Correction, Quarterly Energy Economics Review, 18(72): 1-25 (In Persian)
24. Yu Lean, Dai Wei, Tang Ling (2016). A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting. Engineering Applications of Artificial Intelligence, , 47: 110-121 [DOI:10.1016/j.engappai.2015.04.016]
25. Zhang, Y., Yao, T., He, L., Ripple, R. (2019). Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models, International Review of Economics & Finance, 59: 302- 317. [DOI:10.1016/j.iref.2018.09.006]
26. Zhang, K & Hong, M (2022). Forecasting crude oil price using LSTM neural networks, Data Science in Finance and Economics, 2(3):163-180. [DOI:10.3934/DSFE.2022008]
27. Zou, Yingchao & Chen, Yanhui (2016). Multi-step-ahead Crude Oil Price Forecasting based on Grey Wave Forecasting Method, Procedia Computer Science, 91:1050 - 1056. [DOI:10.1016/j.procs.2016.07.147]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به فصلنامه تحقیقات مدلسازی اقتصادی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Economic Modeling Research

Designed & Developed by : Yektaweb