Search published articles


Showing 2 results for Prediction

Seyed Kamal Sadeghi, Seyed Mehdi Mousavian,
Volume 6, Issue 20 (7-2015)
Abstract

As one of the important energy forms, natural gas consumption has an upward trend in recent years. Therefore management and planning for provision of it requires prediction of the future consumption. But many of prediction procedures are inherently stochastic therefore it is important to have better knowledge about the robustness of prediction procedures. This paper compares robustness of two prediction procedures Artificial Neural Networks as a nonlinear and ARIMA as a linear model. using resampling method to predict the monthly consumption of natural gas in the household sector. Data spans from 2001-4 to 2012-3, to train the networks, we used genetic algorithms and Particle Swarming Optimization then results were compared using 10-fold method. According to the results, the particle swarm optimization (PSO) outperforms the genetic algorithm. Then we used data from 2001-4 to 2010-3, with resampling by 2000 to predict the  natural gas consumption for the 2001 -4 to 2012-3 and to form critical values. Results show that prediction by a mixed method using ANN and PSO is more robust than ARIMA method.


Navid Salek, Morteza Khorsandi,
Volume 13, Issue 47 (5-2022)
Abstract

The price of crude oil is one of the factors affecting economic indicators. Therefore, the prediction of oil prices and the accuracy of the applied methods have always been discussed by economists. In this study, the effect of all effective variables on the supply and demand of crude oil based on McAvoy's competitive theory is investigated, and the supply and demand are estimated using the system of simultaneous equations and conventional statistical methods. Then, using algebraic operations and the assumption of equality of oil supply and demand in the long term, the long-term potential of oil supply and demand is extracted with respect to each of the variables in the model. Based on the results, the world's gross domestic product (GDP) has the greatest impact on oil prices with a demand potential of 0.6039, and the world's military and security tensions have the least impact with a demand potential of –0.0110. After estimating the model, the prediction accuracy of three combined mothod is compared with conventional and single-variable methods of neural network and ARIMA. These three combined methods are: (a) neural network and system of simultaneous equations, (b) ARIMA and system of simultaneous equations, (c) neural network and ARIMA and system of simultaneous equations. The results showed that the combined method of ARIMA and simultaneous equation system provides better reslts for 5-year forecasts while the combined method of neural network and ARIMA and simultaneous equation system shows better results for 10-year forecasts.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Economic Modeling Research

Designed & Developed by : Yektaweb