جستجو در مقالات منتشر شده


1 نتیجه برای تجزیۀ موجک

اسماعیل نادری، دکتر حسین عباسی نژاد،
دوره 3، شماره 8 - ( 4-1391 )
چکیده

  این مطالعه برای پیش‌بینی بازدهی شاخص قیمت و بازده نقدی بورس اوراق بهادار تهران، آشوب را تحلیل و پیش‌بینی‌پذیری را بررسی کرده و نیز عملکرد انواع مدل ‌ های شبکۀ عصبی را با کمک داده‌های تجزیه‌شده با روش موجک ارزیابی کرده است. به‌همین منظور، از داده ‌ های سری‌زمانی روزانه و سری بازدهی شاخص قیمت و بازده نقدی بورس طی دورۀ زمانی ۵ فروردین ‌۱۳۸۸ تا ۱۸ اردیبهشت ۱۳۹۱ استفاده شده است. براساس نتایج این مطالعه، سری بازدهی بورس در دورۀ بررسی‌شده، پیش‌بینی‌پذیر بوده و آثار غیرخطی معیّن و آشوبی داشته است. همچنین برطبق معکوس آمارۀ حداکثر نمای لیاپانوف، تعداد روز‌های پیش‌بینی‌پذیر در این مطالعه، ۳۱ روز به‌دست آمد. یافتۀ دیگر این پژوهش نیز به برتری عملکرد مدل ‌ های شبکۀ عصبی چندلایۀ پیش‌خور ( MFNN ) و شبکۀ عصبی فازی ( ANFIS ) مبتنی‌بر داده ‌ های تجزیه‌شده به کمک تجزیۀ موجک در ­ مقابل به‌کارگیری سطح داده‌ها دلالت دارد. در­این‌بین نیز برتری با مدل شبکۀ عصبی چندلایۀ پیش‌خور بوده است.



صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به فصلنامه تحقیقات مدلسازی اقتصادی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Economic Modeling Research

Designed & Developed by : Yektaweb