دوره 17، شماره 47 - ( 10-1396 )                   جلد 17 شماره 47 صفحات 239دوره227فصل__Se | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Lababpour A. Site assessment for industrial mass cultivation of microalgae: case studies from Persian Gulf and Oman Sea coastal areas. jgs 2017; 17 (47) :227-239
URL: http://jgs.khu.ac.ir/article-1-2673-fa.html
لباب پور عبدالمجید. مکان یابی کشت گسترده صنعتی جلبک: مطالعه موردی درسواحل خلیج فارس و دریای عمان. نشریه تحقیقات کاربردی علوم جغرافیایی. 1396; 17 (47) :227-239

URL: http://jgs.khu.ac.ir/article-1-2673-fa.html


دانشگاه صنعتی شهدای هویزه ، lababpour@shhut.ac.ir
چکیده:   (60981 مشاهده)
دست‌یابی به مقدار کافی زیست‌توده ریزجلبکی، برای کاربری‌های گوناگون مانند غذا، دارو و انرژی ضروری است. منابع تولید زیست‌توده مانند زمین، آب، مواد غذایی و کربن‌دی ‌اکسید در امکان سنجی تولید و بهای تمام شده نقش اساسی دارند. این پژوهش با هدف تعیین مکان‌های مناسب کشت ریزجلبک و منابع کربن‌دی‌اکسید و نیز میزان آب مورد نیاز برای تولید ریزجلبک انجام شده است. برای دست یابی به این هدف، فراوانی و پراکندگی جغرافیایی مکان‌های مناسب کشت و منابع کربن‌دی‌اکسید با به کارگیری روش تحلیل سلسله مراتبی (AHP) در محیط نرم افزاری GIS برای سواحل خلیج فارس و دریای عمان بررسی شده است. داده های مکانی ۵۷ نقطه مناسب کشت ریزجلبک با وسعت حدود ۱۸۰۰۰کیلومترمربع نشان می دهد که امکان گسترش صنعت ریزجلبک درسواحل خلیج فارس و دریای عمان وجود دارد. افزون برآن وجود حداقل ۳۸ نقطه تولید گاز کربن‌دی‌اکسید عمدتا در استان‌های خوزستان و بوشهر شناسایی و گزارش شده است. با فرض ۵، ۶ و ۷ کیلوگرم تبخیر آب در مترمربع در روز در مناطق گوناگون، آب موردنیاز معادل با ۸۴۰۰۰،۸۰۰۰۰ و ۸۹۰۰۰ مترمکعب دردوره کشت درهرواحد برآورد شد. نتایج نشان می دهد که با فناوری کشت ریزجلبک در استخرهای روباز، امکان تولید بیش از ۵۴۰۰۰۰ تن زیست‌توده ریزجلبک در هردوره کشت در سواحل خلیج فارس و دریای عمان امکان پذیراست. افزون برتولید زیست‌توده، کاستن آلایندگی گاز کربن‌دی‌اکسید توسط ریزجلبک‌ها و امکان تامین مواد غذایی ریزجلبک از پساب‌های شهری و تصفیه پساب برای پیشگیری از مخاطرات زیست محیطی نیز میسر خواهد شد.
متن کامل [PDF 1251 kb]   (5630 دریافت)    
نوع مطالعه: كاربردي |

فهرست منابع
1. Béchet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth : State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31:1648–1663. doi: 10.1016/j.biotechadv.2013.08.014
2. Benemann, J.R., Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. University of California at Berkeley
3. Berger M, Finkbeiner M (2010) Water Footprinting: How to Address Water Use in Life Cycle Assessment? Sustainability 2:919–944. doi: 10.3390/su2040919
4. Blaas H, Kroeze C (2014) Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe. Sci Total Environ 496:45–53. doi: 10.1016/j.scitotenv.2014.06.131
5. Guieysse B, Béchet Q, Shilton A (2013) Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions. Bioresour Technol 128:317–323. doi: 10.1016/j.biortech.2012.10.096
6. Jacob-Lopes E, Scoparo CHG, Lacerda LMCF, Franco TT (2009) Effect of light cycles (night/day) on CO2 Process, fixation and biomass production by microalgae in photobioreactors. Chem Eng Process Intensif 48:306–310.
7. Jansson C, Wullschleger SD, Kalluri UC, Tuskan G a. (2010) Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696. doi: 10.1525/bio.2010.60.9.6
8. Kang Z, Kim B-H, Ramanan R, et al (2015) A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J Microbiol Biotechnol 25:109–18. doi: 25341470
9. Lababpour A (2016) Potentials of the microalgae inoculant in restoration of biological soil crusts to combat desertification. Int J Environ Sci Technol 13:2521–2532. doi: 10.1007/s13762-016-1074-4
10. Lababpour A (2012) Opportunities of microalgae large scale production in Iran. In: 1st confrence on National production. Tarbat Modares University, Tehran, Iran,
11. Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A Realistic Technology and Engineering Assessment of Algae Biofuel Production. California
12. McJannet DL, Cook FJ, Burn S (2013) Comparison of techniques for estimating evaporation from an irrigation water storage. Water Resour Res 49:1415–1428. doi: 10.1002/wrcr.20125
13. Molinuevo-Salces B, García-González MC, González-Fernández C (2010) Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresour Technol 101:5144–5149. doi: 10.1016/j.biortech.2010.02.006
14. Moore BC, Coleman AM, Wigmosta MS, et al (2015) A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States. Water Resour Manag 29:5185–5200. doi: 10.1007/s11269-015-1112-x
15. Murphy CF, Allen DT (2011) Energy-water nexus for mass cultivation of algae. Environ Sci Technol 45:5861–5868. doi: 10.1021/es200109z
16. Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88:3377–3388. doi: 10.1016/j.apenergy.2011.04.023
17. Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels, Bioprod Biorefining 3:431–440. doi: 10.1002/bbb.159
18. Salah P, Reisi-Dehkordi A, Kamranzad B (2016) A hybrid approach to estimate the nearshore wave characteristics in the Persian Gulf. Appl Ocean Res 57:1–7. doi: 10.1016/j.apor.2016.02.005
19. Sayre R (2010) Microalgae: The Potential for Carbon Capture. Bioscience 60:722–727. doi: 10.1525/bio.2010.60.9.9
20. Soltanieh M, Zohrabian A, Gholipour MJ, Kalnay E (2016) A review of global gas flaring and venting and impact on the environment: Case study of Iran. Int J Greenh Gas Control 49:488–509. doi: 10.1016/j.ijggc.2016.02.010
21. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. doi: 10.1263/jbb.101.87
22. Venteris ER, Skaggs RL, Coleman AM, Wigmosta MS (2013) A GIS Cost Model to Assess the Availability of Freshwater, Seawater, and Saline Groundwater for Algal Biofuel Production in the United States. Environ Sci Technol 47:4840–4849. doi: 10.1021/es304135b
23. Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM (2014) A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass and Bioenergy 64:276–290. doi: 10.1016/j.biombioe.2014.02.001
24. Weissman JC, Goebel RP (1987) Design and analysis of microalgal open pond systems for the purpose of producing fuels. SERI/SP-231-2840. Solar Energy Research Institute: Golden, CO
25. Wigmosta MS, Coleman AM, Skaggs RJ, et al (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:1–13. doi: 10.1029/2010WR009966
26. Xiong J-Q, Kurade MB, Jeon B-H (2018) Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol 36:30–44. doi: 10.1016/j.tibtech.2017.09.003
27. Béchet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth : State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31:1648–1663. doi: 10.1016/j.biotechadv.2013.08.014
28. Benemann, J.R., Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. University of California at Berkeley
29. Berger M, Finkbeiner M (2010) Water Footprinting: How to Address Water Use in Life Cycle Assessment? Sustainability 2:919–944. doi: 10.3390/su2040919
30. Blaas H, Kroeze C (2014) Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe. Sci Total Environ 496:45–53. doi: 10.1016/j.scitotenv.2014.06.131
31. Guieysse B, Béchet Q, Shilton A (2013) Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions. Bioresour Technol 128:317–323. doi: 10.1016/j.biortech.2012.10.096
32. Jacob-Lopes E, Scoparo CHG, Lacerda LMCF, Franco TT (2009) Effect of light cycles (night/day) on CO2 Process, fixation and biomass production by microalgae in photobioreactors. Chem Eng Process Intensif 48:306–310.
33. Jansson C, Wullschleger SD, Kalluri UC, Tuskan G a. (2010) Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696. doi: 10.1525/bio.2010.60.9.6
34. Kang Z, Kim B-H, Ramanan R, et al (2015) A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J Microbiol Biotechnol 25:109–18. doi: 25341470
35. Lababpour A (2016) Potentials of the microalgae inoculant in restoration of biological soil crusts to combat desertification. Int J Environ Sci Technol 13:2521–2532. doi: 10.1007/s13762-016-1074-4
36. Lababpour A (2012) Opportunities of microalgae large scale production in Iran. In: 1st confrence on National production. Tarbat Modares University, Tehran, Iran,
37. Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A Realistic Technology and Engineering Assessment of Algae Biofuel Production. California
38. McJannet DL, Cook FJ, Burn S (2013) Comparison of techniques for estimating evaporation from an irrigation water storage. Water Resour Res 49:1415–1428. doi: 10.1002/wrcr.20125
39. Molinuevo-Salces B, García-González MC, González-Fernández C (2010) Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresour Technol 101:5144–5149. doi: 10.1016/j.biortech.2010.02.006
40. Moore BC, Coleman AM, Wigmosta MS, et al (2015) A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States. Water Resour Manag 29:5185–5200. doi: 10.1007/s11269-015-1112-x
41. Murphy CF, Allen DT (2011) Energy-water nexus for mass cultivation of algae. Environ Sci Technol 45:5861–5868. doi: 10.1021/es200109z
42. Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88:3377–3388. doi: 10.1016/j.apenergy.2011.04.023
43. Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels, Bioprod Biorefining 3:431–440. doi: 10.1002/bbb.159
44. Salah P, Reisi-Dehkordi A, Kamranzad B (2016) A hybrid approach to estimate the nearshore wave characteristics in the Persian Gulf. Appl Ocean Res 57:1–7. doi: 10.1016/j.apor.2016.02.005
45. Sayre R (2010) Microalgae: The Potential for Carbon Capture. Bioscience 60:722–727. doi: 10.1525/bio.2010.60.9.9
46. Soltanieh M, Zohrabian A, Gholipour MJ, Kalnay E (2016) A review of global gas flaring and venting and impact on the environment: Case study of Iran. Int J Greenh Gas Control 49:488–509. doi: 10.1016/j.ijggc.2016.02.010
47. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. doi: 10.1263/jbb.101.87
48. Venteris ER, Skaggs RL, Coleman AM, Wigmosta MS (2013) A GIS Cost Model to Assess the Availability of Freshwater, Seawater, and Saline Groundwater for Algal Biofuel Production in the United States. Environ Sci Technol 47:4840–4849. doi: 10.1021/es304135b
49. Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM (2014) A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass and Bioenergy 64:276–290. doi: 10.1016/j.biombioe.2014.02.001
50. Weissman JC, Goebel RP (1987) Design and analysis of microalgal open pond systems for the purpose of producing fuels. SERI/SP-231-2840. Solar Energy Research Institute: Golden, CO
51. Wigmosta MS, Coleman AM, Skaggs RJ, et al (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:1–13. doi: 10.1029/2010WR009966
52. Xiong J-Q, Kurade MB, Jeon B-H (2018) Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol 36:30–44. doi: 10.1016/j.tibtech.2017.09.003
53. Béchet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth : State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31:1648–1663. doi: 10.1016/j.biotechadv.2013.08.014
54. Benemann, J.R., Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. University of California at Berkeley
55. Berger M, Finkbeiner M (2010) Water Footprinting: How to Address Water Use in Life Cycle Assessment? Sustainability 2:919–944. doi: 10.3390/su2040919
56. Blaas H, Kroeze C (2014) Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe. Sci Total Environ 496:45–53. doi: 10.1016/j.scitotenv.2014.06.131
57. Guieysse B, Béchet Q, Shilton A (2013) Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions. Bioresour Technol 128:317–323. doi: 10.1016/j.biortech.2012.10.096
58. Jacob-Lopes E, Scoparo CHG, Lacerda LMCF, Franco TT (2009) Effect of light cycles (night/day) on CO2 Process, fixation and biomass production by microalgae in photobioreactors. Chem Eng Process Intensif 48:306–310.
59. Jansson C, Wullschleger SD, Kalluri UC, Tuskan G a. (2010) Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696. doi: 10.1525/bio.2010.60.9.6
60. Kang Z, Kim B-H, Ramanan R, et al (2015) A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J Microbiol Biotechnol 25:109–18. doi: 25341470
61. Lababpour A (2016) Potentials of the microalgae inoculant in restoration of biological soil crusts to combat desertification. Int J Environ Sci Technol 13:2521–2532. doi: 10.1007/s13762-016-1074-4
62. Lababpour A (2012) Opportunities of microalgae large scale production in Iran. In: 1st confrence on National production. Tarbat Modares University, Tehran, Iran,
63. Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A Realistic Technology and Engineering Assessment of Algae Biofuel Production. California
64. McJannet DL, Cook FJ, Burn S (2013) Comparison of techniques for estimating evaporation from an irrigation water storage. Water Resour Res 49:1415–1428. doi: 10.1002/wrcr.20125
65. Molinuevo-Salces B, García-González MC, González-Fernández C (2010) Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresour Technol 101:5144–5149. doi: 10.1016/j.biortech.2010.02.006
66. Moore BC, Coleman AM, Wigmosta MS, et al (2015) A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States. Water Resour Manag 29:5185–5200. doi: 10.1007/s11269-015-1112-x
67. Murphy CF, Allen DT (2011) Energy-water nexus for mass cultivation of algae. Environ Sci Technol 45:5861–5868. doi: 10.1021/es200109z
68. Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88:3377–3388. doi: 10.1016/j.apenergy.2011.04.023
69. Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels, Bioprod Biorefining 3:431–440. doi: 10.1002/bbb.159
70. Salah P, Reisi-Dehkordi A, Kamranzad B (2016) A hybrid approach to estimate the nearshore wave characteristics in the Persian Gulf. Appl Ocean Res 57:1–7. doi: 10.1016/j.apor.2016.02.005
71. Sayre R (2010) Microalgae: The Potential for Carbon Capture. Bioscience 60:722–727. doi: 10.1525/bio.2010.60.9.9
72. Soltanieh M, Zohrabian A, Gholipour MJ, Kalnay E (2016) A review of global gas flaring and venting and impact on the environment: Case study of Iran. Int J Greenh Gas Control 49:488–509. doi: 10.1016/j.ijggc.2016.02.010
73. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. doi: 10.1263/jbb.101.87
74. Venteris ER, Skaggs RL, Coleman AM, Wigmosta MS (2013) A GIS Cost Model to Assess the Availability of Freshwater, Seawater, and Saline Groundwater for Algal Biofuel Production in the United States. Environ Sci Technol 47:4840–4849. doi: 10.1021/es304135b
75. Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM (2014) A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass and Bioenergy 64:276–290. doi: 10.1016/j.biombioe.2014.02.001
76. Weissman JC, Goebel RP (1987) Design and analysis of microalgal open pond systems for the purpose of producing fuels. SERI/SP-231-2840. Solar Energy Research Institute: Golden, CO
77. Wigmosta MS, Coleman AM, Skaggs RJ, et al (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:1–13. doi: 10.1029/2010WR009966
78. Xiong J-Q, Kurade MB, Jeon B-H (2018) Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol 36:30–44. doi: 10.1016/j.tibtech.2017.09.003

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به تحقیقات کاربردی علوم جغرافیایی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb