1. Béchet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth : State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31:1648–1663. doi: 10.1016/j.biotechadv.2013.08.014
2. Benemann, J.R., Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. University of California at Berkeley
3. Berger M, Finkbeiner M (2010) Water Footprinting: How to Address Water Use in Life Cycle Assessment? Sustainability 2:919–944. doi: 10.3390/su2040919
4. Blaas H, Kroeze C (2014) Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe. Sci Total Environ 496:45–53. doi: 10.1016/j.scitotenv.2014.06.131
5. Guieysse B, Béchet Q, Shilton A (2013) Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions. Bioresour Technol 128:317–323. doi: 10.1016/j.biortech.2012.10.096
6. Jacob-Lopes E, Scoparo CHG, Lacerda LMCF, Franco TT (2009) Effect of light cycles (night/day) on CO2 Process, fixation and biomass production by microalgae in photobioreactors. Chem Eng Process Intensif 48:306–310.
7. Jansson C, Wullschleger SD, Kalluri UC, Tuskan G a. (2010) Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696. doi: 10.1525/bio.2010.60.9.6
8. Kang Z, Kim B-H, Ramanan R, et al (2015) A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J Microbiol Biotechnol 25:109–18. doi: 25341470
9. Lababpour A (2016) Potentials of the microalgae inoculant in restoration of biological soil crusts to combat desertification. Int J Environ Sci Technol 13:2521–2532. doi: 10.1007/s13762-016-1074-4
10. Lababpour A (2012) Opportunities of microalgae large scale production in Iran. In: 1st confrence on National production. Tarbat Modares University, Tehran, Iran,
11. Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A Realistic Technology and Engineering Assessment of Algae Biofuel Production. California
12. McJannet DL, Cook FJ, Burn S (2013) Comparison of techniques for estimating evaporation from an irrigation water storage. Water Resour Res 49:1415–1428. doi: 10.1002/wrcr.20125
13. Molinuevo-Salces B, García-González MC, González-Fernández C (2010) Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresour Technol 101:5144–5149. doi: 10.1016/j.biortech.2010.02.006
14. Moore BC, Coleman AM, Wigmosta MS, et al (2015) A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States. Water Resour Manag 29:5185–5200. doi: 10.1007/s11269-015-1112-x
15. Murphy CF, Allen DT (2011) Energy-water nexus for mass cultivation of algae. Environ Sci Technol 45:5861–5868. doi: 10.1021/es200109z
16. Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88:3377–3388. doi: 10.1016/j.apenergy.2011.04.023
17. Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels, Bioprod Biorefining 3:431–440. doi: 10.1002/bbb.159
18. Salah P, Reisi-Dehkordi A, Kamranzad B (2016) A hybrid approach to estimate the nearshore wave characteristics in the Persian Gulf. Appl Ocean Res 57:1–7. doi: 10.1016/j.apor.2016.02.005
19. Sayre R (2010) Microalgae: The Potential for Carbon Capture. Bioscience 60:722–727. doi: 10.1525/bio.2010.60.9.9
20. Soltanieh M, Zohrabian A, Gholipour MJ, Kalnay E (2016) A review of global gas flaring and venting and impact on the environment: Case study of Iran. Int J Greenh Gas Control 49:488–509. doi: 10.1016/j.ijggc.2016.02.010
21. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. doi: 10.1263/jbb.101.87
22. Venteris ER, Skaggs RL, Coleman AM, Wigmosta MS (2013) A GIS Cost Model to Assess the Availability of Freshwater, Seawater, and Saline Groundwater for Algal Biofuel Production in the United States. Environ Sci Technol 47:4840–4849. doi: 10.1021/es304135b
23. Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM (2014) A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass and Bioenergy 64:276–290. doi: 10.1016/j.biombioe.2014.02.001
24. Weissman JC, Goebel RP (1987) Design and analysis of microalgal open pond systems for the purpose of producing fuels. SERI/SP-231-2840. Solar Energy Research Institute: Golden, CO
25. Wigmosta MS, Coleman AM, Skaggs RJ, et al (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:1–13. doi: 10.1029/2010WR009966
26. Xiong J-Q, Kurade MB, Jeon B-H (2018) Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol 36:30–44. doi: 10.1016/j.tibtech.2017.09.003
27. Béchet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth : State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31:1648–1663. doi: 10.1016/j.biotechadv.2013.08.014
28. Benemann, J.R., Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. University of California at Berkeley
29. Berger M, Finkbeiner M (2010) Water Footprinting: How to Address Water Use in Life Cycle Assessment? Sustainability 2:919–944. doi: 10.3390/su2040919
30. Blaas H, Kroeze C (2014) Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe. Sci Total Environ 496:45–53. doi: 10.1016/j.scitotenv.2014.06.131
31. Guieysse B, Béchet Q, Shilton A (2013) Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions. Bioresour Technol 128:317–323. doi: 10.1016/j.biortech.2012.10.096
32. Jacob-Lopes E, Scoparo CHG, Lacerda LMCF, Franco TT (2009) Effect of light cycles (night/day) on CO2 Process, fixation and biomass production by microalgae in photobioreactors. Chem Eng Process Intensif 48:306–310.
33. Jansson C, Wullschleger SD, Kalluri UC, Tuskan G a. (2010) Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696. doi: 10.1525/bio.2010.60.9.6
34. Kang Z, Kim B-H, Ramanan R, et al (2015) A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J Microbiol Biotechnol 25:109–18. doi: 25341470
35. Lababpour A (2016) Potentials of the microalgae inoculant in restoration of biological soil crusts to combat desertification. Int J Environ Sci Technol 13:2521–2532. doi: 10.1007/s13762-016-1074-4
36. Lababpour A (2012) Opportunities of microalgae large scale production in Iran. In: 1st confrence on National production. Tarbat Modares University, Tehran, Iran,
37. Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A Realistic Technology and Engineering Assessment of Algae Biofuel Production. California
38. McJannet DL, Cook FJ, Burn S (2013) Comparison of techniques for estimating evaporation from an irrigation water storage. Water Resour Res 49:1415–1428. doi: 10.1002/wrcr.20125
39. Molinuevo-Salces B, García-González MC, González-Fernández C (2010) Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresour Technol 101:5144–5149. doi: 10.1016/j.biortech.2010.02.006
40. Moore BC, Coleman AM, Wigmosta MS, et al (2015) A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States. Water Resour Manag 29:5185–5200. doi: 10.1007/s11269-015-1112-x
41. Murphy CF, Allen DT (2011) Energy-water nexus for mass cultivation of algae. Environ Sci Technol 45:5861–5868. doi: 10.1021/es200109z
42. Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88:3377–3388. doi: 10.1016/j.apenergy.2011.04.023
43. Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels, Bioprod Biorefining 3:431–440. doi: 10.1002/bbb.159
44. Salah P, Reisi-Dehkordi A, Kamranzad B (2016) A hybrid approach to estimate the nearshore wave characteristics in the Persian Gulf. Appl Ocean Res 57:1–7. doi: 10.1016/j.apor.2016.02.005
45. Sayre R (2010) Microalgae: The Potential for Carbon Capture. Bioscience 60:722–727. doi: 10.1525/bio.2010.60.9.9
46. Soltanieh M, Zohrabian A, Gholipour MJ, Kalnay E (2016) A review of global gas flaring and venting and impact on the environment: Case study of Iran. Int J Greenh Gas Control 49:488–509. doi: 10.1016/j.ijggc.2016.02.010
47. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. doi: 10.1263/jbb.101.87
48. Venteris ER, Skaggs RL, Coleman AM, Wigmosta MS (2013) A GIS Cost Model to Assess the Availability of Freshwater, Seawater, and Saline Groundwater for Algal Biofuel Production in the United States. Environ Sci Technol 47:4840–4849. doi: 10.1021/es304135b
49. Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM (2014) A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass and Bioenergy 64:276–290. doi: 10.1016/j.biombioe.2014.02.001
50. Weissman JC, Goebel RP (1987) Design and analysis of microalgal open pond systems for the purpose of producing fuels. SERI/SP-231-2840. Solar Energy Research Institute: Golden, CO
51. Wigmosta MS, Coleman AM, Skaggs RJ, et al (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:1–13. doi: 10.1029/2010WR009966
52. Xiong J-Q, Kurade MB, Jeon B-H (2018) Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol 36:30–44. doi: 10.1016/j.tibtech.2017.09.003
53. Béchet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth : State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31:1648–1663. doi: 10.1016/j.biotechadv.2013.08.014
54. Benemann, J.R., Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. University of California at Berkeley
55. Berger M, Finkbeiner M (2010) Water Footprinting: How to Address Water Use in Life Cycle Assessment? Sustainability 2:919–944. doi: 10.3390/su2040919
56. Blaas H, Kroeze C (2014) Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe. Sci Total Environ 496:45–53. doi: 10.1016/j.scitotenv.2014.06.131
57. Guieysse B, Béchet Q, Shilton A (2013) Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions. Bioresour Technol 128:317–323. doi: 10.1016/j.biortech.2012.10.096
58. Jacob-Lopes E, Scoparo CHG, Lacerda LMCF, Franco TT (2009) Effect of light cycles (night/day) on CO2 Process, fixation and biomass production by microalgae in photobioreactors. Chem Eng Process Intensif 48:306–310.
59. Jansson C, Wullschleger SD, Kalluri UC, Tuskan G a. (2010) Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696. doi: 10.1525/bio.2010.60.9.6
60. Kang Z, Kim B-H, Ramanan R, et al (2015) A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J Microbiol Biotechnol 25:109–18. doi: 25341470
61. Lababpour A (2016) Potentials of the microalgae inoculant in restoration of biological soil crusts to combat desertification. Int J Environ Sci Technol 13:2521–2532. doi: 10.1007/s13762-016-1074-4
62. Lababpour A (2012) Opportunities of microalgae large scale production in Iran. In: 1st confrence on National production. Tarbat Modares University, Tehran, Iran,
63. Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A Realistic Technology and Engineering Assessment of Algae Biofuel Production. California
64. McJannet DL, Cook FJ, Burn S (2013) Comparison of techniques for estimating evaporation from an irrigation water storage. Water Resour Res 49:1415–1428. doi: 10.1002/wrcr.20125
65. Molinuevo-Salces B, García-González MC, González-Fernández C (2010) Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresour Technol 101:5144–5149. doi: 10.1016/j.biortech.2010.02.006
66. Moore BC, Coleman AM, Wigmosta MS, et al (2015) A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States. Water Resour Manag 29:5185–5200. doi: 10.1007/s11269-015-1112-x
67. Murphy CF, Allen DT (2011) Energy-water nexus for mass cultivation of algae. Environ Sci Technol 45:5861–5868. doi: 10.1021/es200109z
68. Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88:3377–3388. doi: 10.1016/j.apenergy.2011.04.023
69. Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels, Bioprod Biorefining 3:431–440. doi: 10.1002/bbb.159
70. Salah P, Reisi-Dehkordi A, Kamranzad B (2016) A hybrid approach to estimate the nearshore wave characteristics in the Persian Gulf. Appl Ocean Res 57:1–7. doi: 10.1016/j.apor.2016.02.005
71. Sayre R (2010) Microalgae: The Potential for Carbon Capture. Bioscience 60:722–727. doi: 10.1525/bio.2010.60.9.9
72. Soltanieh M, Zohrabian A, Gholipour MJ, Kalnay E (2016) A review of global gas flaring and venting and impact on the environment: Case study of Iran. Int J Greenh Gas Control 49:488–509. doi: 10.1016/j.ijggc.2016.02.010
73. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. doi: 10.1263/jbb.101.87
74. Venteris ER, Skaggs RL, Coleman AM, Wigmosta MS (2013) A GIS Cost Model to Assess the Availability of Freshwater, Seawater, and Saline Groundwater for Algal Biofuel Production in the United States. Environ Sci Technol 47:4840–4849. doi: 10.1021/es304135b
75. Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM (2014) A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass and Bioenergy 64:276–290. doi: 10.1016/j.biombioe.2014.02.001
76. Weissman JC, Goebel RP (1987) Design and analysis of microalgal open pond systems for the purpose of producing fuels. SERI/SP-231-2840. Solar Energy Research Institute: Golden, CO
77. Wigmosta MS, Coleman AM, Skaggs RJ, et al (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:1–13. doi: 10.1029/2010WR009966
78. Xiong J-Q, Kurade MB, Jeon B-H (2018) Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol 36:30–44. doi: 10.1016/j.tibtech.2017.09.003