دوره 26، شماره 80 - ( 1-1405 )                   جلد 26 شماره 80 صفحات 0دوره0فصل__Se | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amiri V, Sohrabi N, Moosavizadeh S M. (2026). Evaluation of the role of natural and anthropogenic factors in groundwater pollution in the Qazvin aquifer. jgs. 26(80),
URL: http://jgs.khu.ac.ir/article-1-4384-fa.html
امیری وهاب، سهرابی نسیم، موسوی زاده سید محمدعلی.(1405). ارزیابی نقش عوامل طبیعی و انسانی در آلودگی آب زیرزمینی در آبخوان قزوین تحقیقات کاربردی علوم جغرافیایی 26 (80)

URL: http://jgs.khu.ac.ir/article-1-4384-fa.html


1- دانشگاه یزد، گروه زمین‌شناسی، دانشگاه یزد، یزد، ایران ، v.amiri@yazd.ac.ir
2- شرکت آب منطقه‌ای یزد، شرکت آب منطقه‌ای یزد، یزد، ایران
3- دانشگاه یزد، گروه زمین‌شناسی، دانشگاه یزد، یزد ایران
چکیده:   (5673 مشاهده)
این مطالعه تأثیر عوامل زمین‌شناسی و انسانی بر ترکیب فیزیکوشیمیایی آب‌های زیرزمینی آبخوان قزوین را مورد ارزیابی قرار داده است. بر اساس دیاگرام گیبس بهینه شده، تمرکز نمونه‌ها در انتهای مسیر برهمکنش آب شیرین با واحدهای سیلیکاته تکامل ژئوشیمیایی ناشی از انحلال این واحدهای زمین‌شناسی و افزایش نسبت Na/(Na+Ca) است. مکانیسم تبادل کاتیونی در تغییر ترکیب شیمیایی آب زیرزمینی با استفاده از نمودار دو متغیره Ca+Mg نسبت به SO4+HCO3 و شاخص‌های کلروآلکالن CAI-1 و CAI-2 مورد ارزیابی قرار گرفت. نتایج نشان می‌دهد که در 68 درصد از نمونه‌ها تبادل یونی مستقیم و در 32 درصد نیز تبادل یونی معکوس ترکیب شیمیایی آب زیرزمینی را کنترل می‌کنند. تغییرات Ca در مقابل SO4  بیانگر عدم تأثیرگذاری صرف انحلال ژیپس به عنوان منشأ یون‌های کلسیم و سولفات است. این تغییرات می‌تواند به دلیل تحرک و انتقال یون در خلال فرایندهای پدوژنیک  (چرخه بیوژئوشیمیایی سولفور) و فعالیت‌های انسانی باشد. بررسی نقش عواملی همچون ورودی کشاورزی، ورودی اتمسفری، نیتروژن خاک، فاضلاب، کود دامی، کود شیمیایی و فرایند دنیتریفیکاسیون در آلودگی آب زیرزمینی با بهره‌گیری از نمودار NO3/Na در مقابل Cl/Na و نسبت NO3/Cl در مقابل Cl دنبال شد. نتایج نشان می‌دهد که ورودی‌های کشاورزی و فاضلاب دارای نقش موثرتری در تغییر محتوای NO3 و Cl نمونه‌های آب زیرزمینی هستند. علاوه بر این، در برخی موقعیت‌ها به ویژه جنوب شرقی آبخوان، فرآیند دنیتریفیکاسیون موجب کاهش غلظت NO3 می‌شود. نتایج این مطالعه می‌تواند با درک مکانیسم‌های کنترل کننده ترکیب فیزیکوشیمیایی و شناسایی عوامل محتمل آلاینده آب زیرزمینی به مدیریت موثر منابع آب در این آبخوان استراتژیک کمک کند.
     
نوع مطالعه: پژوهشي | موضوع مقاله: اب و هواشناسی

فهرست منابع
1. سازمان زمین‌شناسی و اکتشافات معدنی کشور، (1381). نقشه زمین‌شناسی 1:100000 قزوین. برگه شماره 6062.
2. شرکت سهامی آب منطقه‌ای قزوین، (1403). گزارش "تعیین هندسه آبخوان دشت قزوین و ارائه مدلی مفهومی برای آن".
3. طوس آب، (1389). مطالعات به تعادل رساندن بیلان و تعیین عمق سقف کف‌شکنی چاه‌های دشت قزوین، جلد سوم: هیدروژئولوژی و بیلان. گزارش شماره 1/13960-430582. شرکت آب منطقه‌ای قزوین
4. Alavi, M. (1996). The Alborz Mountains: Geological evolution and structural setting. Journal of the Geological Society, 153(1), 21-36.
5. Amiri, V., Ali, S., & Sohrabi, N. (2023). Estimating the spatio-temporal assessment of GRACE/GRACE-FO derived groundwater storage depletion and validation with in-situ water quality data (Yazd province, central Iran). Journal of Hydrology, 620, 129416. [DOI:10.1016/j.jhydrol.2023.129416]
6. Ansari, J.A., & Umar, R. (2019). Evaluation of hydrogeochemical characteristics and
7. groundwater quality in the quaternary aquifers of Unnao District, Uttar Pradesh,
8. India. HydroResearch, 1, 36-47. [DOI:10.1016/j.hydres.2019.01.001]
9. APHA (American Public Health Association). (1985). Standard methods of the examination of water/waste-water (16th ed.). New York: APHA, AWWA, and WPCF.
10. Behrens, S., Spohn, M., Wang, Y., Huang, W., Li, Z., Song, B., Feng, W., & Li, L. (2018). Impact of long-term fertilization on the spatial distribution of denitrification potential in a paddy soil profile. Geoderma, 326, 130-139.
11. Böttcher, J., Strehlow, K., Levin, G., Richter, A., Schröder, P., Knöller, K., Lintz, D., & Conrad, R. (1990). Microbial biomass turnover in a paddy soil and its importance for the maintenance of organic matter stocks. FEMS Microbiology Ecology, 74(4), 299-308.
12. Canter, L.W. (1996). Nitrates in Groundwater. CRC Press.
13. Chirila, E., Carazeanu, I., Dobrinas, S. (2000). Spectrometric studies about some dyes - anionic surfactant interactions in aqueous solutions. Talanta, 53(1), 271-275. [DOI:10.1016/S0039-9140(00)00463-X]
14. Egbi, C.D., Anornu, G.K., Ganyaglo, S.Y., Appiah-Adjei, E.K., Li, S.L., & Dampare, S.B., (2020). Nitrate contamination of groundwater in the Lower Volta River Basin of Ghana: Sources and related human health risks. Ecotoxicology and Environmental Safety, 191, 110227. [DOI:10.1016/j.ecoenv.2020.110227]
15. Fan, B., Zhao, Z., Tao, F., Liu, B., Tao, Z., Gao, S., & Zhang, L. (2014). Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: a comparison among the upstream, midstream and downstream. Journal of Asian Earth Sciences, 96, 17-26. [DOI:10.1016/j.jseaes.2014.09.005]
16. Gai, J., Yan, B., Fan, C., Tuo, Y., & Ma, M. (2024). Hydrochemical Evolution Process and Mechanism of Groundwater in the Hutuo River Alluvial Fan, North China. Water, 16, 2229. [DOI:10.3390/w16162229]
17. Gao, X., Li, X., Wang, W., & Li, C. (2020). Human Activity and Hydrogeochemical Processes Relating to Groundwater Quality Degradation in the Yuncheng Basin, Northern China. International Journal of Environmental Research and Public Health, 17, 867. [DOI:10.3390/ijerph17030867]
18. Gibbs, R.J. (1970). Mechanisms controlling world water chemistry. Science, 170, 1088-1090. [DOI:10.1126/science.170.3962.1088]
19. Gómez-Hernández, J.J., & Xu, T. (2022). Contaminant Source Identification in Aquifers: A Critical View. Mathematical Geosciences, 54, 437–458. [DOI:10.1007/s11004-021-09976-4]
20. Grassi, S., Cortecci, G., & Squarci, P., (2007). Groundwater resource degradation in coastal plains: the example of the Cecina area (Tuscany-Central Italy). Applied Geochemistry, 2273-2289. [DOI:10.1016/j.apgeochem.2007.04.025]
21. Groffman, P.M., Snyder, C.S., Robertson, G.P., & Weldon, A.J. (1996). Denitrification in grass landslands in relation to landscape position and hydraulic conductivity. Soil Science Society of America Journal, 60(6), 1826-1834.
22. Hadjiioannou, T.P., Papastathopoulous, D.S. (1970). EDTA titration of calcium and magnesium with a calcium-selective electrode. Talanta, 17(5), 399-406. [DOI:10.1016/0039-9140(70)80085-6]
23. Hong, N., Hama, T., Suenaga, Y., et al. (2016). Application of a modified conceptual rainfall-runoff model to simulation of groundwater level in an undefined watershed. Science of the Total Environment, 541, 383-390. [DOI:10.1016/j.scitotenv.2015.09.026]
24. ISO (International Standards Organisation). (1993). Water quality-sampling-part 11: Guidance on sampling of groundwaters. ISO 5667-11.
25. Jorgensen, N.O., Jorgensen, M.S., & Andersen, P., (2008). Engesgaard Investigation of a dynamic seawater intrusion event using strontium isotopes (87Sr/86Sr). Journal of Hydrology, 348, 257-269. [DOI:10.1016/j.jhydrol.2007.10.001]
26. Ju, X.T., Xing, G.X., Chen, X.P., Zhang, S.L., Zhang, L.J., Liu, X.J., Cui, Z.L., Yin, B., Peter, Christie, Zhu, Z.L., & Zhang, F.S. (2009). Reducing environmental risk by improving N management in intensive Chinese agricultural systems. PNAS, [DOI:10.1073/pnas.0813417106]
27. Ketata, M., Hamzaoui, F., Gueddari, M., et al. (2011). Hydrochemical and statistical study of groundwaters in Gabes-south deep aquifer (southeastern Tunisia). Physics and Chemistry of the Earth, 36, 187-196. [DOI:10.1016/j.pce.2010.02.006]
28. Kontos, Y.N., Kassandros, T., Perifanos, K. et al. (2022). Machine learning for groundwater pollution source identification and monitoring network optimization. Neural Computing and Applications, 34, 19515–19545. [DOI:10.1007/s00521-022-07507-8]
29. Korom, S.F. (1992). Natural denitrification in the saturated zone: A review. Water Resources Research, 28(6), 1657-1668. [DOI:10.1029/92WR00252]
30. Lapworth, D., Boving, T., Brauns, B. et al. (2023). Groundwater quality: global challenges, emerging threats and novel approaches. Hydrogeology Journal, 31, 15–18. [DOI:10.1007/s10040-022-02542-0]
31. Lasagna, M., De Luca, D.A., & Franchino, E. (2016). The role of physical and biological processes in aquifers and their importance on groundwater vulnerability to nitrate pollution. Environmental Earth Sciences, 75, 961. [DOI:10.1007/s12665-016-5768-1]
32. Lee, J.Y., & Song, S.H. (2007). Evaluation of groundwater quality in coastal areas: implications for sustainable agriculture. Environmental Geology, 52(7), 1231-1242. [DOI:10.1007/s00254-006-0560-2]
33. Li, J., Yang, G., Zhu, D., Xie, H., Zhao, Y., Fan, L., & Zou, S. (2022). Hydrogeochemistry of karst groundwater for the environmental and health risk assessment: The case of the suburban area of Chongqing (Southwest China). Geochemistry, 82(2), 125866, [DOI:10.1016/j.chemer.2022.125866]
34. Linhoff, B., (2022). Deciphering natural and anthropogenic nitrate and recharge sources in arid region groundwater. Science of the Total Environment, 848, 157345. [DOI:10.1016/j.scitotenv.2022.157345]
35. Liu, J.T., Peng, Y.M., Li, C.S., Gao, Z.J., & Chen, S.J. (2021). Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health. Environmental Pollution, 268, 115947. [DOI:10.1016/j.envpol.2020.115947]
36. Liu, J.T., Wang, M., Gao, Z.J., Chen, Q., Wu, G.W., & Li, F.Q. (2020). Hydrochemical characteristics and water quality assessment of groundwater in the Yishu River basin. Acta Geophysica, 68, 877-889. [DOI:10.1007/s11600-020-00440-1]
37. Lüke, M., Liu, B., Frenzel, P., & Conrad, R. (2010). Nitrous oxide production and consumption during denitrification in a paddy soil. Soil Biology and Biochemistry, 42(5), 867-874.
38. Ma, X., Luo, J., Li, X. et al. (2024). Identification of groundwater pollution sources based on optimal layout of groundwater pollution monitoring network. Stochastic Environmental Research and Risk Assessment, 38, 3429–3444. [DOI:10.1007/s00477-024-02756-6]
39. Marandi, A., & Shand, P. (2018). Groundwater chemistry and the Gibbs Diagram. Applied Geochemistry, 97, 209-212. [DOI:10.1016/j.apgeochem.2018.07.009]
40. Mattos, J.B., Cruz, M.J.M., Paula, F.C.F. De, & Sales, E.F. (2018). Spatio-seasonal changes in the hydrogeochemistry of groundwaters in a highland tropical zone. Journal of South American Earth Sciences, 88, 275-286. [DOI:10.1016/j.jsames.2018.08.023]
41. Misstear, B., Vargas, C.R., Lapworth, D. et al. (2023). A global perspective on assessing groundwater quality. Hydrogeology Journal, 31, 11–14. [DOI:10.1007/s10040-022-02461-0]
42. Patel, P.S., Pandya, D.M. & Shah, M. (2023). A holistic review on the assessment of groundwater quality using multivariate statistical techniques. Environmental Science and Pollution Research, 30, 85046–85070. [DOI:10.1007/s11356-023-27605-x]
43. Ren, X., Li, P., He, X. et al. (2021). Hydrogeochemical Processes Affecting Groundwater Chemistry in the Central Part of the Guanzhong Basin, China. Archives of Environmental Contamination and Toxicology, 80, 74–91. [DOI:10.1007/s00244-020-00772-5]
44. Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W.N., & Bemment, C.D. (2008). Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research, 42(16), 4215-4232. [DOI:10.1016/j.watres.2008.07.020]
45. Roy, A., Kanti Das, B., Bhattacharya, J. (2011). Development and validation of a spectrophotometric method to measure sulfate concentrations in mine water without interference. Mine Water and the Environment, 30(3), 169-174. [DOI:10.1007/s10230-011-0140-x]
46. Rupias, O.J.B., Pereira, S.Y., & de Abreu, A.E.S. (2021). Hydrogeochemistry and groundwater quality assessment using the water quality index and heavy-metal pollution index in the alluvial plain of Atibaia river- Campinas/SP, Brazil. Groundwater for Sustainable Development, 15, 100661. [DOI:10.1016/j.gsd.2021.100661]
47. Sanchez-Vila, X. et al. (2015). Emerging Organic Contaminants in Aquifers: Sources, Transport, Fate, and Attenuation. In: Petrovic, M., Sabater, S., Elosegi, A., Barceló, D. (eds) Emerging Contaminants in River Ecosystems. The Handbook of Environmental Chemistry, vol 46. Springer, Cham. [DOI:10.1007/698_2015_5010]
48. Šarac, N., Vukasović, D., Šimon, T., Čuljak, T., & Heinemeyer, O. (2017). Denitrification potential and its regulation by organic matter quality in differently managed arable soils. Geoderma, 292, 20-28.
49. Scanlon, B.R., Keese, K.E., Flint, A.L., Flint, L.E., Gaye, C.B., Edmunds, W.M., & Simmers, I. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20, 3335-3370. [DOI:10.1002/hyp.6335]
50. Schmidt, C.S., Conrad, R., Thannenhäuser, H., Erlich, M., Jungblut, A.D., Freier, B., & Murakami, M. (2016). Origin and fate of organic matter in deep terrestrial subsurface systems: A review. Earth-Science Reviews, 159, 162-185.
51. Schoeller, H. (1965). Qualitative evaluation of groundwater resources. In Methods and Techniques of Groundwater Investigations and Developments. UNESCO.
52. Singh B., & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3, 518. [DOI:10.1007/s42452-021-04521-8]
53. Subramani, T., Rajmohan, N., & Elango, L. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment, 162, 123–137. [DOI:10.1007/s10661-009-0781-4]
54. Todd, D.K. (1980). Groundwater Hydrology, Second Edition. John Wiley and Sons, New York, 535 pp
55. Wang, H., Lu, K., Shen, C., Song, X., Hu, B., & Liu, G. (2021). Human health risk assessment of groundwater nitrate at a two geomorphic units transition zone in northern China. Journal of Environmental Sciences, 110, 38-47. [DOI:10.1016/j.jes.2021.03.013]
56. Ward, M.H., Jones, R.R., Brender, J.D., Weyer, P.J., Nolan, B.T., & Villanueva, C.M. (2018). Drinking Water Nitrate and Human Health: An Updated Review. International Journal of Environmental Research and Public Health, 15(7). [DOI:10.3390/ijerph15071557]
57. World Water Quality Alliance (2021) Assessing groundwater quality: a global perspective: importance, methods and potential data sources. A report by the Friends of Groundwater in the World Water Quality Alliance. Information Document Annex for display at the 5th Session of the United Nations Environment Assembly, Nairobi 2021. https://www.un-igrac.org/sites/default/files/resources/files/Assessing%20Groundwater%20Quality_A%20Global%20Perspective.pdf.
58. Xia, Y.Q., Li, Y.F., Zhang, X.Y., & Yan, X.Y. (2017). Nitrate source apportionment using a combined dual isotope, chemical and bacterial property, and Bayesian model approach in river systems. Journal of Geophysical Research: Biogeosciences, 122(1), 2-14. [DOI:10.1002/2016JG003447]
59. Xiong, Y., Luo, J., Liu, X., Liu, Y., Xin, X., & Wang, S. (2022). Machine learning-based optimal design of groundwater pollution monitoring network. Environmental Research, 211, 113022. [DOI:10.1016/j.envres.2022.113022]
60. Yadata, D. (2014). Determination of the concentration of K+1, Na+1 and Fe+2 in Achane and Shay river a case of Tepi Town. Universal Journal of Chemistry, 2(4), 59-63. [DOI:10.13189/ujc.2014.020402]
61. Yang, X.L., Lu, Y.L., Tong, Y.A., & Yin, X.F. (2015). A 5-year lysimeter monitoring of nitrate leaching from wheatemaize rotation system: comparison between optimum N fertilization and conventional farmer N fertilization. Agriculture, Ecosystems & Environment, 199, 34-42. [DOI:10.1016/j.agee.2014.08.019]
62. Zaidi, F.K., Nazzal, Y., Jafri, M.K., Naeem, M., & Ahmed, I. (2015). Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia. Environmental Monitoring and Assessment, 187(10), 607. [DOI:10.1007/s10661-015-4828-4]
63. Zhang, Q., Qian, H., Xu, P., Li, W., Feng, W., & Liu, R. (2021). Effect of hydrogeological conditions on groundwater nitrate pollution and human health risk assessment of nitrate in Jiaokou Irrigation District. Journal of Cleaner Production, 298, 126783. [DOI:10.1016/j.jclepro.2021.126783]
64. Zhang, X.Y., Xu, Z.W., Sun, X.M., Dong, W.Y., & Ballantine, D. (2013). Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004–2010. Journal of Environmental Sciences, 25, 1007-1014. [DOI:10.1016/S1001-0742(12)60139-9]
65. Zhang, Y., Dai, Y., Wang, Y., Huang, X., Xiao, Y., Pei, Q. (2021). Hydrochemistry, quality and potential health risk appraisal of nitrate enriched groundwater in the Nanchong area, southwestern China. Science of the Total Environment, 784, 147186. [DOI:10.1016/j.scitotenv.2021.147186]
66. Zumft, W.G. (1997). Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews, 61(4), 533-616.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وبگاه متعلق به تحقیقات کاربردی علوم جغرافیایی است.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Applied Researches in Geographical Sciences

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)