جستجو در مقالات منتشر شده


4 نتیجه برای شبکه عصبی مصنوعی

زهرا حجازی زاده، ابراهیم فتاحی، محمد سلیقه، فاطمه ارسلانی،
دوره 13، شماره 29 - ( 6-1392 )
چکیده

سیگنال های اقلیمی، الگوهای بزرگ مقیاسی از ناهنجاری های گردش و فشار هوا میباشد که در محدوده جغرافیایی وسیع گسترش یافته است. این سیگنال ها در توجیه رفتار اقلیم از اهمیت زیادی برخوردارند. در این پژوهش ارتباط بارش با سیگنال های اقلیمی(AO, NAO,SOI, ENSO) در ناحیه مرکزی ایران مورد بررسی قرار گرفته است. داده های سیگنال ها از پایگاه داده های NCEP استخراج گردید و مجموعه داده های بارش ماهانه نیز از مرکز خدمات ماشینی سازمان هواشناسی کشور دریافت شد. داده ها ماهانه طی دوره ی آماری 30 ساله، بین سال های 1978 تا 2008 بوده است. در نهایت با بکارگیری روش شبکه عصبی مصنوعی، مدل های شبیه سازی شده برای بازه های 0، 3  و 6  ماهه محاسبه شد و نتایج نشان داد از بین سیگنال های مورد مطالعه سیگنال ENSO در مناطقNINO1.2  و NINO3 بر بارش منطقه مورد مطالعه تاثیر معنی داری دارد و تاخیر 3 و 6 ماهه موجب قوی شدن ضریب همبستگی شاخص انسو در مناطق NINO1.2 و NINO3 با بارش ایستگاه های مورد مطالعه شده است. همچنین تاخیر 6 ماهه باعث منفی شدن ضریب همبستگی بین شاخص انسو در مناطق NINO1.2 و NINO3 است. مطابق با مدل های ارئه شده، سیگنال انسو در مناطق NINO1.2 و NINO3 می تواند به عنوان پیش بینی کننده بارش در کنار سایر پارامترهای تاثیر گذار مورد استفاده قرار گیرد و سایر سیگنال های اقلیمی مورد مطالعه تاثیر معنی داری بر بارش ایستگاه های مورد مطالعه ندارد.  
آرش ملکیان، مه رو ده بزرگی، امیر هوشنگ احسانی،
دوره 15، شماره 36 - ( 3-1394 )
چکیده

خشکسالی یکی از مخرب ترین بلایای طبیعی در جوامع بشری محسوب می شود که می تواند تاثیرات جبران ناپذیر کشاورزی، زیست محیطی، اجتماعی و اقتصادی  به همراه داشته باشد. بنابراین آگاهی از وقوع خشکسالی می تواند در کاهش خسارات موثر باشد. در این پژوهش، به منظور مدلسازی و شبیه سازی شدت خشکسالی در طول یک دوره آماری 37 ساله (1350- 1386) در 21 ایستگاه بارانسنجی واقع در ناحیه نیمه خشک سرد شمال غربی ایران از شبکه عصبی مصنوعی بهره گرفته شد. داده های ورودی به شبکه شامل میانگین بارش سالیانه و نیز شاخص دهک بارش سالیانه برای تمامی ایستگاه ها بوده که 80% داده ها برای آموزش شبکه (1350-1379) و20% باقیمانده برای تست و اعتبار سنجی شبکه (1380-1386) انتخاب گردید. سپس عمل پیش بینی خشکسالی توسط الگوریتم آموزش دیده شده توسط شبکه عصبی مصنوعی و بدون استفاده از داده های واقعی و مشاهداتی، برای سال های 1387 تا 1391صورت گرفت. معماری مطلوب شبکه به صورت مدل پرسپترون  با سه لایه پنهان، الگوی پس انتشار خطا و تابع محرک سیگموئید به همراه 10 نرون در لایه میانی انتخاب گردید. نتایج حاصله نشان داد که شبکه عصبی مصنوعی به خوبی قادر به پیش بینی روابط غیر خطی بارش و خشکسالی بوده بطوریکه با همبستگی بیشتر از 97% و خطای کمتر از 5% مقادیر شاخص دهک بارش را پیش بینی نموده و نتایج حاصل از این پیش بینی بطور زیادی منطبق با مقادیر واقعی می باشد. از این رو با استفاده از این روش می توان وضعیت خشکسالی را در سال های آتی پیش بینی کرده و در مدیریت و بهره وری منابع آب و نیز مدیریت خشکسالی و تغییرات اقلیمی از این روش بهره جست.
جواد سدیدی، هانی رضائیان، محمدرضا برشان،
دوره 17، شماره 47 - ( 10-1396 )
چکیده

بواسطه پیچیدگی عملکردی پدیده آلودگی هوا، از روش­های هوش مصنوعی بالاخص شبکه عصبی برای مدل سازی آلودگی هوا استفاده می­شود. هدف از این پژوهش دو مدل شبکه عصبی بازگشتی Elman و Jordan در زمینه پراکنش خطا و اعتبارسنجی آنها، به منظور تخمین غلظت ذرات معلق موجود در اتمسفر در شهر اهواز می­باشد. پارامترهای مورد استفاده شامل رطوبت، فشار هوا، دما و عمق نوری آئروسل می­بوده که مقادیر آن از تصاویر ماهواره­ای MODIS و داده­های ایستگاه­های هواشناسی تهیه شده است. نتایج نشان می­داد که مدل Jordan با مقدار RMSE معادل 9/219 میلی گرم بر متر مکعب نسبت به مدل Elman با مقدار RMSE معادل 5/228 دقت برازش بهتری داشته است. مدل Jordan به دلیل استفاده از حلقه­های درونی سبب به­روز رسانی مقادیر زمینه شده و این امر موجب افزایش صحت مدل می­شود. مقدار شاخص R2 ، که نماینده میزان رابطه خطی بین مقادیر پیش­بینی شده با مقادیر واقعی است، برای مدل Jordan معادل 5/0 بدست­آمده است که درصد تخمین صحیح 50 درصد داده­ها را نشان می­داد. در نهایت با استفاده ازداده­های مربوط به غلظت PM10 برای روز 162 که بالاترین میزان غلظت را داشت با روش درونیابی IDW نقشه توزیع مکانی آن تولید شد. با توجه به گران بودن ایستگاه­های آلودگی سنجی پیشنهاد شد از منابع کمکی دیگر مانند اطلاعات داوطلبانه با استفاده از سنسورهای ارزان قیمت موبایل به عنوان ایستگاه کمکی متحرک و کم هزینه جهت افزایش تراکم و پراکنش مناسب ایستگاه­ها جهت مدلسازی دقیق­تر آلودگی هوا استفاده شود.
 

علی هاشمی، حجت الله یزدان پناه، مهدی مومنی شهرکی،
دوره 24، شماره 75 - ( 10-1403 )
چکیده

متغیرهای اقلیمی مهم ترین عوامل تأثیرگذار بر تغییرات پوشش گیاهی محسوب می شوند. امروزه از تصاویر ماهواره ای به طور گسترده ای برای بررسی اثر نوسانات متغیرهای اقلیمی بر تغییرات پوشش گیاهی استفاده می گردد. هدف از پژوهش حاضر بررسی رابطه متغیر اقلیمی بارش، دما و رطوبت بر تغییرات شاخص¬های پوشش گیاهی  باغات پرتقال حسن آباد داراب با استفاده از داده های ماهواره ای می­باشد. بدین منظور داده­های مشاهداتی، شامل داده­های فنولوژی درخت پرتقال و داده­های هواشناسی در بازه زمانی ده‌ساله (1385 تا 1395) مربوط به ایستگاه هواشناسی کشاورزی حسن‌آباد داراب جمع‌آوری‌شده است. تصاویر سنجنده مودیس برای سال 1385 تا 1395 با توجه به داده­های زمینی و نقشه­های 1:25000 سازمان نقشه‌برداری زمین مرجع شدند. این تصاویر برای محاسبه شاخص­های پوشش گیاهی سنجش‌ازدوری شامل شاخص تفاضلی نرمال شده پوشش گیاهی (NDVI)، شاخص وضعیت پوشش گیاهی (EVI) استفاده گردید. نتایج نشان داد که متغیرهای حداکثر رطوبت، حداقل دما و بارش دارای تأثیر مثبت معنی‌دار بر متغیر NDVI هستند. به‌علاوه متغیرهای حداکثر دما، حداقل رطوبت دارای تأثیر منفی معنی‌دار بر متغیر وابسته NDVI و EVI هستند. به‌منظور تعیین اهمیت هریک از متغیرهای مستقل در پیش‌بینی متغیرهای وابسته از روش شبکه عصبی مصنوعی استفاده شد. یافته­ها نشان داد که عناصر اقلیمی بارش، حداقل دما، حداکثر دما، حداقل رطوبت و حداکثر با مقادیر به  ترتیب (39/0، 3/0، 13/0، 1/0 و 06/0 ) بیشترین تأثیر را بر EVI دارند. به‌علاوه تاثیر این متغیرها بر شاخص NDVI به ترتیب ضرایب آنها (2/0، 28/0، 22/0، 11/0 و 17/0) می­باشد.درنهایت به‌منظور افزایش قدرت توضیح دهندگی مدل از روش رگرسیون ARMAX استفاده شد. نتایج نشان داد استفاده از این روش منجر به افزایش قدرت توضیح دهندگی مدل، کاهش خطای پیش‌بینی می‌گردد.


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به تحقیقات کاربردی علوم جغرافیایی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb