جستجو در مقالات منتشر شده


2 نتیجه برای پرسپترون چند لایه

خانم عاطفه بساک، دکتر زهرا حجازی زاده، دکتر اکبر حیدری تاشه کبود،
دوره 0، شماره 0 - ( 1-1300 )
چکیده

هدف این مطالعه ارزیابی و پیش‌بینی PM10 شهر اهواز با روش‌های آماری و شبکه عصبی مصنوعی بود. داده‌های روزانه‌ی هواشناسی و داده‌های PM10 (1390 تا 1402) از سازمان هواشناسی و اداره کل محیط‌زیست خوزستان دریافت شد. ابتدا داده‌ها پردازش و نرمال بودن آن‌ها با روش کلموگروف اسمیرنوف بررسی شد. با توجه به غیرنرمال بودن داده‌ها، از روش‌های اسپیرمن و تاوی بی کندال برای بررسی همبستگی‌شان با نرم‌افزار spss استفاده شد. سایر بخش‌ها با زبان برنامه‌نویسی پایتون و در فضای اسپایدر انجام شد؛ سری زمانی و اطلاعات آماری داده‌ها به دست آمد. جهت پیش‌بینی میزان PM10 برای گام‌های زمانی آینده از روش شبکه عصبی (MLP) استفاده شد. بیانگر وجود ارتباط معنادار بین متغیرهای هواشناسی و PM10 بود. به ترتیب، نتایج همبستگی‌های اسپیرمن و تاوی بی کندال نشان داد بین PM10 با سرعت باد (به میزان 0.094 و 0.061) و دما (0.284 و 0.187) دارای همبستگی مثبت و معنادار در سطح اطمینان 99% می‌باشد. همچنین، این پارامتر با دیدافقی (0.408- و 0.300 -)، جهت باد (0.048 و 0.034 -)، بارش (0.159 و 0.125-) و رطوبت نسبی (0.259 و 0.173-) دارای همبستگی معکوس و معناداری در سطح اطمینان 0.99% بوده است. برای پیش‌بینی میزان PM10 آینده، از شبکه عصبی (MLP) استفاده شد. مدل از نوع Sequential با یک لایه‌ی ورودی با 6 نورون، سه لایه‌ی مخفی از نوع Dense با 16، 32 و 64 نورون و یک لایه خروجی بود. میانگین مربعات خطای MSE برای بخش آموزش برابر با 0.0034 و برای داده‌های اعتبارسنجی val_loss: 0.0012 بود. برای بخش آزمایش، اعتبار سنجی برابر mse_mlp=0.0048 و val_loss: 0.0012 بود. نتایج می‌دهد که بین داده‌های هواشناسی و PM10 همبستگی معناداری از نوع مستقیم یا معکوسی وجود دارد. نتایج (MLP) نشان داد که شبکه توانسته عملکرد و خروجی مطلوبی را ارائه دهد و پیش‌بینی قابل‌قبولی برای داده‌های PM10 شهر اهواز داشته باشد.
 

سمیه مهرآبادی،
دوره 21، شماره 60 - ( 1-1400 )
چکیده

روش‌های کلاسیک یا روشهای سخت بر دقیق بودن محاسبات، پایه­گذاری شده­اند درحالیکه دنیای واقعی بر نادقیق بودن مرزها و عدم قطعیت­ها استوار است که بیشتر با روش‌های محاسبات نرم مطابقت دارد، که این روش­ها نیز به تنهایی نقاط ضعف و قوتی دارند و برای رفع آنها تئوری پیوند­زنی مطرح شد که با عنوان سیستم­های ترکیبی هوشمند شناخته می­شوند. در این تئوری دو یا چند روش هوشمند با یکدیگر ترکیب می­شود تا کاستی­ها و نواقص روش­های منفرد رفع یا تعدیل گردد. در این مطالعه، تخریب جنگل با استفاده از شبکه عصبی پرسپترون و روش ترکیبی عصبی-فازی مدل­سازی شده­است. برای اینکار از تصاویر سنسور TM ماهواره لندست 5 سال 1999 و سنسور OLI متعلق به لندست 8 برای سال 2017 استفاده شد. از مناطق جنگلی تخریب شده و جنگل بدون تخریب در 200 نقطه نمونه­برداری شد. سپس 7 فاکتور تخریب جنگل شامل: فاصله ازعوارضی همچون (شهر-رودخانه-روستا-دریا-جاده)، ارتفاع و شیب برای 200 نقطه محاسبه شد. برای ارزیابی عملکرد مدل­ها از میانگین مربعات خطای استفاده شد که برای شبکه پرسپترون با سه الگوریتمLevenberg-Marquardt, Bayesian Regularization, Scaled Conjugate Gradient  به ترتیب 50.053، 40.070 و 80.090 بدست­آمد. MSE برای مدل عصبی-فازی با الگوریتم بهینه­سازی و روش ترکیبی به ترتیب 00.019 و 0.0102 محاسبه شد. تحلیل نتایج حاکی از عملکرد مطلوب مدل نروفازی در کاهش خطا و افزایش تعمیم­پذیری می­باشد. مدل نروفازی با تکیه بر قاعده عدم قطعیت شرایطی را ایجاد کرده که به واقعیت شباهت بیشتری داشته و نسبت به مدل پرسپترون در انتخاب داده­ی مناسب موفق­تر بوده­است.
 


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به تحقیقات کاربردی علوم جغرافیایی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb