Volume 12, Issue 1 And 45 (8-2025)                   Journal of Spatial Analysis Environmental Hazards 2025, 12(1 And 45): 1-20 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roshani M, Saligheh M, Alijani B, Begum Hejazizadeh Z. Synoptic Analysis of Summer Dry Spells in Southern Coasts of the Caspian Sea and Its Relationship with Atmospheric Circulation. Journal of Spatial Analysis Environmental Hazards 2025; 12 (1 and 45) : 1
URL: http://jsaeh.khu.ac.ir/article-1-3163-en.html
1- - , m.roahani@gmail.com
2- Kharazmi University
Abstract:   (6623 Views)
In this study, the synoptic patterns of the warm period of the year that lead to the cessation of rainfall and the creation of short to long dry spells were identified and analyzed. For this purpose, the rainfall data of 8 synoptic stations were used to identify the dry spells of the warm season for 30 years (1986 to 2015). The average daily rainfall of each station was used as the threshold value to distinguish between wet and dry spells. Then, according to the effects of dry spells, they were defined subjectively and objectively with different durations. Thus, 5 numerical periods of 12 to 15, 15 to 30, 30 to 45, 45 to 60 and more than 60 days were identified. By factor analysis of Geopotential height data at 500 hPa, 4 components were identified for each period and a total of 20 components for 5 dry spells. Therefore, 5 common patterns control the stable weather conditions of dry spells. Most dry days are caused by subtropical high-pressure nuclei, which have a wide, even, dual-core, triple-core arrangement. The effect of subtropical high pressure on the dryness of the southern coast of the Caspian Sea is quite evident. Other dry days were caused by southerly currents, weakening of northern currents, and the trough Anticyclones’ area. Also, the anomaly map of the components days at the 500 hPa level showed that the anticyclones and cyclones correspond to the positive and negative phases of the anomalies, respectively.
Article number: 1
     
Type of Study: Research | Subject: Special
Received: 2020/09/14 | Accepted: 2022/10/28 | Published: 2025/09/21

References
1. Mathugama, S. C.; T. S. G. Peiris. 2011. Critical Evaluation of Dry Spell Research. International Journal of Basic & Applied Sciences, 11 (6): 153-160.
2. Cook, G. D.; R. G. Heerdegen. 2001. Spatial variation in the duration of the rainy season in monsoonal Australia. International Journal of Climatology, 21: 1723-1732. [DOI:10.1002/joc.704]
3. Lund, I. A. 1963. Map - pattern classification by statistical methods. Journal of applied meteorology, 2: 56-65. https://doi.org/10.1175/1520-0450(1963)002<0056:MPCBSM>2.0.CO;2 [DOI:10.1175/1520-0450(1963)0022.0.CO;2]
4. Kalkstein, L. S.; G. Tan, and J. A. Skindlov. 1987. An evaluation of three clustering procedures for in synoptic climatological classification. Journal of climate and applied meteorology, 26: 717-730. https://doi.org/10.1175/1520-0450(1987)026<0717:AEOTCP>2.0.CO;2 [DOI:10.1175/1520-0450(1987)0262.0.CO;2]
5. Sheridan, S. C. 2002. The redevelopment of a weather-type classification scheme for North America. International journal of climatology, 22: 51-68. DOI: 10.1002/joc.709. [DOI:10.1002/joc.709]
6. Bhalme, H. N.; D. A. Mooley. 1980. Large-scale drought/floods and monsoon circulation. Monthly weather review. 108: 1197-1211. https://doi.org/10.1175/1520-0493(1980)108<1197:LSDAMC>2.0.CO;2 [DOI:10.1175/1520-0493(1980)1082.0.CO;2]
7. Pena, M.; M. W. Douglas. 1998. Characteristics of Wet and Dry Spells over the Pacific Side of Central America during the Rainy Season. Monthly weather review, 130: 3054-3073. https://doi.org/10.1175/1520-0493(2002)130<3054:COWADS>2.0.CO;2 [DOI:10.1175/1520-0493(2002)1302.0.CO;2]
8. Mo, K. C.; J. N. Paegle, and R. W. Higgins. 2001. Atmospheric Processes Associated with Summer Floods and Droughts in the Central United States. Journal of climate, 10: 3028-3046. https://doi.org/10.1175/1520-0442(1997)010<3028:APAWSF>2.0.CO;2 [DOI:10.1175/1520-0442(1997)0102.0.CO;2]
9. Diem, J. E. 2006. Synoptic-Scale Controls of Summer Precipitation in the Southeastern United States. Journal of climate, 19: 613-621, DOI: 10.1175/JCLI3645.1. [DOI:10.1175/JCLI3645.1]
10. Vicente-Serrano, S. M.; J. I. Lopez-Moreno. 2006. The influence of atmospheric circulation at different spatial scales on winter drought variability through a semi-arid climatic gradient in northeast Spain. International journal of climatology, 26: 1427-1453, DOI: 10.1002/joc.1387. [DOI:10.1002/joc.1387]
11. Pfister, C.; R. Weingartner, and J. Luterbacher. 2006. Hydrological winter droughts over the last 450 years in the Upper Rhine basin: a methodological approach. Hydrological Sciences Journal, 51(5): 966-985, ISSN: 2150-3435, http://dx.doi.org/10.1623/hysj.51.5.966. [DOI:10.1623/hysj.51.5.966]
12. Santos, J.; J. Corte-real, and S. Leite. 2007. Atmospheric large-scale dynamics during the 2004/2005 winter drought in Portugal. International journal of climatology, 27: 571-586, DOI: 10.1002/joc.1425. [DOI:10.1002/joc.1425]
13. Verdon-Kidd, D. C.; A. S. Kiem. 2009. Nature and causes of protracted droughts in southeast Australia: Comparison between the Federation, WWII, and Big Dry droughts. Geophysical research letters, 36: 1-6, Doi: 10.1029/2009GL041067. [DOI:10.1029/2009GL041067]
14. Charabi, Y.; S. Al-Hatrushi. 2010. Synoptic aspects of winter rainfall variability in Oman. Atmospheric Research, 95: 470-486. [DOI:10.1016/j.atmosres.2009.11.009]
15. Wang, S. Y.; J. H. Yoon, R. R. Gillies, and C. Cho. 2013. What Caused the Winter Drought in Western Nepal during Recent Years? Journal of climate, 26: 8241-8256, DOI: 10.1175/JCLI-D-12-00800.1. [DOI:10.1175/JCLI-D-12-00800.1]
16. Miron, O.; P. D. Tyson. 1984. Wet and dry conditions and pressure anomaly fields over South Africa and the adjacent oceans, 1963-79. Monthly weather review, 112: 2127-2132. https://doi.org/10.1175/1520-0493(1984)112<2127:WADCAP>2.0.CO;2 [DOI:10.1175/1520-0493(1984)1122.0.CO;2]
17. Shabbar, A.; B. R. Bonsal, and K. Szeto. 2011. Atmospheric and Oceanic Variability Associated with Growing Season Droughts and Pluvials on the Canadian Prairies. Atmosphere-Ocean, 49 (4): 339-355, ISSN: 1480-9214, http://dx.doi.org/10.1080/07055900.2011.564908. [DOI:10.1080/07055900.2011.564908]
18. Rimkus, E.; J. Kazys, D. Valiukas, and G. Stankunavicius. 2014. The atmospheric circulation patterns during dry periods in Lithuania. Oceanologia, 56 (2): 223-239, doi:10.5697/oc.56-2.223. [DOI:10.5697/oc.56-2.223]
19. Omidvar, K.; M. Fatemi, M. Narangifard, and K. B. B. Hatami. 2016. A Study of the Circulation Patterns Affecting Drought and Wet Years in Central Iran. Advances in Meteorology, 2016: 1-14, http://dx.doi.org/10.1155/2016/1843659. [DOI:10.1155/2016/1843659]
20. Sen, Z.; 2010. Fuzzy Logic and Hydrological Modeling. Taylor and Francis Group, CRC Press, New York, PP: 340. [DOI:10.1201/9781439809402]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb